

Iranian Journal of Medical Microbiology | ISSN:2345-4342

Whole-Genome Sequencing of a Clinically Isolated Antibiotic-Resistant Enterococcus faecium EntfacYE

Yara Elahi¹, Golshid Javdani Shahedin², Ahmad Nejati³, Iradj Ashrafi⁴, Mahla Asadian⁵, Ramin Mazaheri Nezhad Fard⁵

- 1. Department of Genetics, Faculty of Life Sciences, Islamic Azad University Tehran North Branch, Tehran, Iran
- 2. Pasteur Institute of Iran, Tehran, Iran
- 3. Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- 4. Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- 5. Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

<u>10.30699/ijmm.15.6.692</u>

ABSTRACT

Background and Aim: Enterococcal infections are considered the most common nosocomial infections. Nowadays, enterococci show high resistance to common antibiotics, especially vancomycin. Vancomycin-resistant *Enterococcus faecium* is one of the most common nosocomial infections, which is included in the World Health Organization priority pathogens list for research and development of new antibiotics. In this case, we focused on the *E. faecium* EntfacYE genome and its antibiotic-resistant genes to understand the reasons that caused this bacteria to be resistant to antibiotics.

Materials and Methods: In total, 25 enterococcal samples were isolated from patients' blood. Bacteriophages were isolated on a multidrug-resistant Enterococcus faecium EntfacYE in our previous study. In this study, the isolated *E. faecium* EntfacYE strain was verified using Sanger partial sequencing of the bacterial elongation factor Tu. EntfacYE strain was assessed for antibiotic resistance, and the bacterial genome was extracted and completely sequenced. The sequenced genome was analyzed, and the genes were annotated in the DNA Data Bank of Japan.

Results: Totally, EntfacYE genome subsystems included 23 various categories with 59 genes belonging to antimicrobial resistance genes, such a way that 49 antibiotic resistance genes were included in specific subsystems, while ten genes lacked specific subsystems. Moreover, cadmium, cobalt, copper, zinc, and mercury resistance genes were identified in the EntfacYE genome.

Conclusion: In conclusion, studies on bacterial genomes help researchers to identify characteristics of common pathogens, including virulence and antibiotic-resistance genes, and hence better understand bacterial pathogenesis to provide novel solutions for the treatment of common infections.

Keywords: Antibiotic resistance, Clinical sample, Enterococcus faecium, Whole-genome Sequencing

	Receive	ed: 2021/07/21;	Accepted: 2021/11/01;	Published Online: 2021/12/08
Corresponding Information:		Ramin Mazaheri Nezha	d Fard, Department of Pathobiology	r, School of Public Health, Tehran University of Medical Sciences,
		Tehran, Iran Tel/fax: +98	8- 21-42933208, Email: <u>raminmazah</u>	heri@gmail.com
	Copyright © 202	I, This is an original open-access	article distributed under the terms of the 0	creative Commons Attribution-noncommercial 4.0 International License which
	permits copy and	redistribution of the material junction	ist in noncommercial usages with proper cit	ation.
	Use you	Ir device to scan and r	ead the article online	
	Elahi Seque Micro	Y, Javdani Shahedin encing of a Clinicall biol. 2021; 15 (6) :6	G, Nejati A, Ashrafi I, Asad y Isolated Antibiotic-Resist 92-699	ian M, Mazaheri Nezhad Fard R. Whole-Genome ant Enterococcus faecium EntfacYE. Iran J Med
Download c	itation: <u>Bi</u>	oTeX <u>RIS</u> <u>EndN</u>	lote Medlars ProCite	<u>Reference Manager</u> <u>RefWorks</u>
Send citatic	n to:	Mendeley ② <u>Zo</u>	tero 💷 RefWorks	

1. Introduction

Enterococci are Gram-positive catalase-negative bacteria that are naturally present in the gastrointestinal tract (GIT) of humans, animals, and the environment. Enterococci were reported to be the leading cause of antibiotic-resistant infections in the human bloodstream, urinary tract (UI), and surgical wounds in the 1970s and 1980s. Antibiotic resistance is a major threat to human health worldwide and significantly increases health care costs (1). Two important and pathogenic species of enterococci are *E. faecium* and *E. faecalis. Enterococcus faecium* as a human pathogen is particularly important due to its high resistance to various antimicrobial drugs such as ampicillin and vancomycin (2). In general, up to 80% of *E. faecium* isolates in hospitals are resistant to vancomycin (3). The rapid spread of vancomycin resistance in these strains greatly challenges the ability of physicians to treat infections as no other antimicrobial drugs are often available (4).

Accurate identification of vancomycin-resistant enterococci (VRE) reservoirs and transmission pathways is critical for strategic infection control interventions (5, 6). For example, enterococci could transmit vancomycin resistance to methicillin-resistant Staphylococcus aureus (MRSA) (7). Whole-genome sequencing (WGS) is a comprehensive high-resolution method used to sequence a wide range of bacterial species and mapping of pathogen trans-mission routes (8). Enterococcus faecium genetic features have been investigated specifically to identify the bacterial lineages (9). Factors associated with E. faecium infections in humans include virulence factors (VF), antibiotic resistance (AR) genes, mobile genetic elements (MGE), and multiple-locus sequencing (MLST) patterns (10, 11). The aim of this study was to sequence and analyze the multidrug-resistant E. faecium EntfacYE genome, focusing on the genes involved in antibiotic resistance.

2. Material and Methods

Isolation of *E. faecium* EntfacYE

Twenty-five clinical enterococci were isolated from patients' blood from 2019 to 2020. Sampling was carried out in a university teaching hospital, Tehran, Iran (ethics approval no. IR.TUMS.SPH.REC.1397.139). Of all the enterococcal isolates, one *E. faecium* strain isolated from a clinical blood sample that three various bacteriophages were isolated on it, was selected in this study (*E. faecium* EntfacYE) (12). The bacterial strain was cultured on trypticase soy agar (TSA) media for purification. Furthermore, the isolate was verified using morphological, biochemical, and molecular techniques. Assays such as Gram staining, catalase, growth in 6.5% NaCl, and glucose utilization were used for the isolate as well.

Furthermore, the isolates were assessed for resistance to common antibiotics using the disk diffusion method. The isolate was cultured on Mueller-Hinton agar media and exposed to the selected antibiotics at 37°C for 24 h. The assessed antibiotics included cefoxitin, ceftriaxone, clindamycin, erythromycin, linezolid, and vancomycin. After incubation, inhibition zone diameters were measured, and a bacterial resistance pattern was reported.

Sanger Partial Sequencing

Molecular identification of the isolate was carried out using PCR amplification of the elongation factor Tu

(EF-Tu) gene. Then, a PCR amplicon was sequenced using the Sanger method (Kawsar Biotech, Iran). Briefly, a single bacterial colony was dissolved in sterile distilled water (DW) in a sterile microtube. To extract the bacterial genome, the microtube was incubated at 90°C for 30 min and then centrifuged at 7500 g for 5 min. The genome concentration was measured, and the ratios of 260/280 and 260/230 nm were calculated using NanoDrop One (Thermo Fisher Scientific, USA). Then, the extracted bacterial genome was amplified using a pair of specific primers, including Ent1: 5'-TACTGACAAACCATTCATGATG-3' and Ent2: 5'-AACTTCGTCACCAACGCGAAC-3' (13).

Enterococcus faecium EntfacYE Genome Analysis

The *E. faecium* EntfacYE genome was extracted using ethanol and propanol (precipitation method). Then, the extracted genome was wholely sequenced using Illumina Hiseq platform (Novogene, China) and *de novo* genome assembly as well as SPAdes algorithm. The bacterial genome was comprehensively analyzed using RAST (rapid annotation using subsystem technology) online sequence analysis service (https://rast.nmpdr.org).

3. Results

In general, the phenotypic assessment results verified the enterococcal isolate as E. faecium. To genotypically verify the isolates, the bacterial tuf gene was partially sequenced and the results were annotated in the DDBJ (DNA Data Bank of Japan) genomic database (accession Nos. LC580430 and LC580431) after primary analysis with BLAST (basic local alignment search tool) online service (https://blast.ncbi.nlm.nih.gov). Then, the bacterial whole genome sequence was analyzed, and the genome structure and subsystems were studied (Table 1). The bacterial whole-genome sequencing results were also annotated in DDBJ (BOPS 01000001-BOPS 01001574). EntfacYE genome subsystems included 23 various categories. In general, carbohydrates, amino acids, and protein metabolism categories included the most-frequent and sulfur metabolism, cell division and cell cycle, and phosphorus metabolism categories included the least-frequent subsystems in the EntfacYE genome. Antimicrobial resistance assessment results revealed resistance of E. faecium EntfacYE to vancomycin, erythromycin, clindamycin, cefoxitin, and ceftriaxone. Antibiotic resistance genes were divided into two major groups of genes with and without subsystems. Relatively, 49 antibiotic resistance genes were included in specific subsystems, while ten genes lacked specific subsystems (Tables 2 and 3). Furthermore, cadmium, cobalt, copper, zinc, and mercury resistance genes were identified.

Table 1. General information about E. faecium EntfacYE genome sequencing analysis*

Genome Annotation/Feature	<i>E. faecium</i> EntfacYE
DDBJ accession nos.	BOPS01000001-BOPS01001574
Isolation source	Patient blood sample
Size (bp)	3,624,552
GC content (%)	39
Contig	1
Subsystems	242
CDS	3957
RNAs	71

*: <u>https://getentry.ddbj.nig.ac.jp/getentry/</u>

Table 2. Antimicrobial-resistance subsystems in *E. faecium* EntfacYE genome analysis*

No.	Subsystem	Feature
1	Copper homeostasis	Negative transcriptional regulator-copper transport operon
7	Copper homeostasis	Copper-translocating P-type ATPase
1	Copper homeostasis	Copper chaperone
1	Copper homeostasis	Copper tolerance protein
2	Bile hydrolysis	Choloylglycine hydrolase
1	Cobalt-zinc-cadmium resistance	Cobalt-zinc-cadmium resistance protein
1	Cobalt-zinc-cadmium resistance	Probable cadmium-transporting ATPase
2	Cobalt-zinc-cadmium resistance	Transcriptional regulator, MerR family
2	Mercuric reductase	PF00070 family, FAD-dependent NAD(P)-disulfide oxidoreductase
2	Mercuric reductase	Mercuric ion reductase
2	Mercury resistance operon	Mercuric ion reductase
1	Vancomycin tolerance locus	Sensor histidine kinase VncS
2	Vancomycin tolerance locus	ABC transporter, ATP-binding protein Vex2
1	Vancomycin tolerance locus	Two-component response regulator VncR
1	Vancomycin tolerance locus	ABC transporter membrane-spanning permease, Pep export, Vex1
1	Vancomycin Tolerance Locus	ABC transporter membrane-spanning permease, Pep export, Vex3
1	Resistance to fluoroquinolones	DNA gyrase subunit B
1	Resistance to fluoroquinolones	DNA gyrase subunit A
1	Copper homeostasis: copper tolerance	Cytoplasmic copper homeostasis protein CutC
1	Fosfomycin resistance	Fosfomycin resistance protein FosX
1	Beta-lactamase	Metal-dependent hydrolases of the beta-lactamase superfamily I
1	Cadmium resistance	Cadmium efflux system accessory protein
1	Multidrug resistance efflux pumps	Multidrug resistance efflux pump PmrA
1	Multidrug resistance efflux pumps	Multiple antimicrobial extrusion protein (Na(+)/drug antiporter), MATE family of MDR efflux pumps
1	Mycobacterium virulence operon involved in protein synthesis (SSU ribosomal proteins)	SSU ribosomal protein S7p

No.	Subsystem	Feature
1	Mycobacterium virulence operon involved in protein synthesis (SSU ribosomal proteins)	Translation elongation factor G
2	Mycobacterium virulence operon involved in protein synthesis (SSU ribosomal proteins)	Translation elongation factor Tu
1	Mycobacterium virulence operon involved in protein synthesis (SSU ribosomal proteins)	SSU ribosomal protein S12p
2	Mycobacterium virulence operon involved in DNA transcription	DNA-directed RNA polymerase beta subunit
3	Mycobacterium virulence operon involved in DNA transcription	DNA-directed RNA polymerase beta subunit
1	Mycobacterium virulence operon involved in protein synthesis (LSU ribosomal proteins)	LSU ribosomal protein L35p
1	Mycobacterium virulence operon involved in protein synthesis (LSU ribosomal proteins)	Translation initiation factor 3
1	Mycobacterium virulence operon involved in protein synthesis (LSU ribosomal proteins)	LSU ribosomal protein L20p
*		

*: https://rast.nmpdr.org/seedviewer.cgi?page=Organism&organism=66666666.717700

 Table 3. Non-subsystem antimicrobial resistance genes in E. faecium EntfacYE genome*

Туре	Length (bp)	Subsystem	Function
CDS	531	Uncharacterized	Protein YacP, similar to C-terminal domain of ribosome protection-type Tc- resistance proteins
CDS	372	Uncharacterized	Glyoxalase/bleomycin resistance protein/dioxygenase superfamily protein
CDS	321	Uncharacterized	Small multidrug resistance family (SMR) protein
CDS	1713	Uncharacterized	Heterodimeric efflux ABC transporter, multidrug resistance => LmrC subunit of LmrCD
CDS	1773	Uncharacterized	Heterodimeric efflux ABC transporter, multidrug resistance => LmrD subunit of LmrCD
CDS	1920	Uncharacterized	Tetracycline resistance, ribosomal protection type => Tet(M)
CDS	900	Uncharacterized	Cobalt/zinc/cadmium resistance protein CzcD
CDS	486	Uncharacterized	Teicoplanin resistance protein VanZ
CDS	609	Uncharacterized	D-alanyl-D-alanine dipeptidase (EC 3.4.13.22) of vancomycin resistance => VanX
CDS	969	Uncharacterized	D-lactate dehydrogenase VanH, associated with vancomycin resistance

*: https://rast.nmpdr.org/seedviewer.cgi?page=Organism&organism=66666666.717700

4. Discussion

In recent decades, the resistance of most pathogens such as enterococci to available antibiotics has broadly increased. Enterococci cause a variety of infections, including opportunistic infections in hospitalized patients. In fact, *E. faecium* is one of the most important causes of nosocomial infections. Based on the reports, the mortality rate due to enterococcal bacteremia is estimated as 15–35% (14). In the present study, 23% of the bacterial genome was covered by subsystems, including various categories (Figure 1). The highest proportion was linked to the carbohydrates and protein metabolism groups, similar to a recent study on *E. faecium* R.A73 genome by Jeni *et al.* (2020) (15). Results from the present study demonstrated that the *E. faecium* EntfacYE strain

isolated from a clinical blood sample was resistant to vancomycin, erythromycin, clindamycin, cefoxitin, and ceftriaxone and included various antibiotic-resistance genes. In recent decades, enterococcal resistance to vancomycin has increased, causing serious problems in treating infections (16, 17). In 2015, O'Toole *et al.* reported significant increases in vancomycin-resistant *E. faecium* isolates from Royal Hobart Hospital of Australia. Their study presented a shifting epidemicology pattern of VREfm from sporadic to endemic. They also showed the utility of isolates from asymptomatic patients to link epidemiological gaps between the patients (18). Lytsy *et al.* compared whole-genome sequences of vancomycin-resistant enterococci in three suspected outbreaks in Sweden during 2013–2015 using PFGE and MLST. They concluded that WGS-ANI was an easy method for this purpose. It was a user-friendly method, compared to

MLST and PFGE. They recommended using WGS-ANI instead of PFGE for epidemiological outbreak investigations (19).

Figure 1. EntfacYE genome subsystem analysis using RAST

Based on the results from molecular studies. E. faecium is more resistant to routine antibiotics compared to E. faecalis, in which more than half of the enterococcal pathogens are resistant to common antibiotics such as vancomycin, ampicillin, and aminoglycosides (20). In this study, vancomycin resistance in EntfacYE isolate was due to the presence of van genes in the bacterial genome. A study in Iran showed that 12 out of 22 E. faecium isolates were resistant to vancomycin (21). In another study by Arbabi et al. (2016), more than half of E. faecium isolates were resistant to vancomycin (22). Active efflux pump is a common mechanism responsible for erythromycin resistance (23); thus, the presence of genes encoding efflux proteins in EntfacYE might lead to erythromycin resistance. In a study in Iran, 64% of enterococcal isolates, including E. faecalis and E. faecium, demonstrated resistance to erythromycin (24). Enterococci are intrinsically resistant to clindamycin; however, no relevant mechanisms have already been described (25). In this study, clindamycin resistance was associated with the ABC protein family. In a study in 2020, two genes involved in clindamycin resistance were identified in Bacillus licheniformis and Bacillus paralicheniformis (26). In the current study, resistance to cefoxitin and ceftriaxone was due to the presence of beta-lactamase genes. In a study by Rengaraj et al. (2016), 49% of S. aureus isolates were resistant to cefoxitin (27). In the present study, fosfomycin resistance genes were detected. This antibiotic is an alternative antibiotic against multidrug-resistant bacteria (28). In a study on Pseudomonas stutzeri, Soltani et al. (2015) reported that soils contaminated with heavy metals were potential sources for isolating metal-resistant strains (29). As heavy metals' level increases in the environment due to modern industrial and agricultural activities, bacteria develop strategies to decrease intracellular concentrations of these toxic contaminants. Therefore, environments contaminated with heavy metals naturally contain microorganisms capable of resisting these metals (30). Plasmids mostly carry resistancerelated genes and could spread resistance genes between bacteria through MGEs (e.g., the spread of plasmid genes from cadmium-resistant bacteria to other bacteria). In fact, heavy metal resistance is often associated with plasmids. However, this resistance is sometimes chromosomally originated (31). Copper homeostasis subsystem in E. faecium EntfacYE was reported in Salmonella enterica and Mycobacterium tuberculosis in 2019 (32).

Furthermore, bile salt hydrolysis determinants in *E. faecium* EntfacYE were investigated in *Enterococcus* strains isolated from artisanal dairy products in a study by Nami *et al.* (2019) (33). The presence of heavy metal resistance genes such as copper-zinc, cadmium, and mercury in the bacterial genome could be due to the gene transfer through plasmids or other MGEs. Accurate identification of *Enterococcus* species and their antibiotic resistance patterns is critical in providing effective treatments and appropriate medications (28, 34).

5. Conclusion

In this study, *E. faecium* EntfacYE genome analysis was carried out, focusing on antimicrobial resistance encoding genes. Further analysis of bacterial genomes, especially antibiotic resistance genes, can open new horizons for discovering novel medications other than common antibiotics and efficiently prevent the further spread of bacterial resistance.

Acknowledgment

The authors thank all the staff within the Microbiology Laboratory, School of Public Health, Tehran University of Medical Sciences for their help.

Funding

None.

Conflict of Interest

The authors declared no conflict of interest.

References

- Gilmore MS, Lebreton F, van Schaik W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol. 2013;16(1):10-6. [PMID] [PMCID] [DOI:10.1016/j.mib.2013.01.006]
- Willems RJ, Top J, Marga van Santen D, Coque TM, Baquero F, Grundmann H, Bonten MJ. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis. 2005;11(6):821.
 [DOI:10.3201/1106.041204] [PMID] [PMCID]
- Arias CA, Murray BE. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther. 2008;6(5) :637-55. [DOI:10.1586/14787210.6.5.637] [PMID]
- Bonten MJ, Willems R, Weinstein RA. Vancomycin-resistant enterococci: why are they here and where do they come from? Lancet Infect Dis. 2001;1(5):314-25. [DOI:10.1016/S1473-3099(01)00145-1]
- Benenson S, Cohen MJ, Block C, Stern S, Weiss Y, Moses AE, JIRMI Group. Vancomycin-resistant enterococci in long-term care facilities. Infect Control Hosp Epidemiol. 2009;30(8):786-9. [DOI:10.1086/598345] [PMID]
- Gruber I, Heudorf U, Werner G, Pfeifer Y, Imirzalioglu C, Ackermann H, Brandt C, Besier S, Wichelhaus TA. Multidrug-resistant bacteria in geriatric clinics, nursing homes and ambulant care-prevalence and risk factors. Int J Med

Microbiol Suppl. 2013;303(8):405-9. [DOI:10.1016/j.ijmm.2013.05.002] [PMID]

- Kos VN, Desjardins CA, Griggs A, Cerqueira G, Van Tonder A, Holden MT, Godfrey P, Palmer KL, Bodi K, Mongodin EF, Wortman J. Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States. MBio. 2012;3(3). [DOI:10.1128/mBio.00112-12]
- Brodrick HJ, Raven KE, Harrison EM, Blane B, Reuter S, Torok ME, Parkhill J, Peacock SJ. Wholegenome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Med. 2016;8(1):1-9. [DOI:10.1186/s13073-015-0259-7] [PMID] [PMCID]
- Kim EB, Marco ML. Nonclinical and clinical Enterococcus faecium strains, but not Enterococcus faecalis strains, have distinct structural and functional genomic features. Appl Environ Microbiol. 2014;80(1):154-65.
 [DOI:10.1128/AEM.03108-13] [PMID] [PMCID]
- Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266-78.
 [DOI:10.1038/nrmicro2761] [PMID] [PMCID]
- 11. Palmer KL, Gilmore MS. Multidrug-resistant enterococci lack CRISPR-cas. MBio. 2010;1(4). [DOI:10.1128/mBio.00227-10] [PMID] [PMCID]
- Elahi Y, Nowroozi J, Fard RM. Isolation and characterization of bacteriophages from wastewater sources on Enterococcus spp. isolated from clinical samples. Iran J Microbiol. 2021;13(5):671-7.
 [DOI:10.18502/ijm.v13i5.7434]
- Adeniji OO, Sibanda T, Okoh AI. Recreational water quality status of the Kidd's Beach as determined by its physicochemical and bacteriological quality parameters. Heliyon. 2019;5(6):e01893. [PMID] [PMCID] [DOI:10.1016/j.heliyon.2019.e01893]
- Wang Y, Oppong TB, Liang X, Duan G, Yang H. Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci cocolonization in patients: A meta-analysis. Am J Infect Control. 2019;48(8):925-932. [DOI:10.1016/j.ajic.2019.11.010] [PMID]
- 15. El Jeni R, Ghedira K, El Bour M, Abdelhak S, Benkahla A, Bouhaouala-Zahar B. High-quality genome sequence assembly of R. A73 Enterococcus faecium isolated from freshwater

fish mucus. BMC Microbiol. 2020;20(1):1-2. [DOI:10.1186/s12866-020-01980-8] [PMID] [PMCID]

- Shokoohizadeh L, Ekrami A, Labibzadeh M, Ali L, Alavi SM. Antimicrobial resistance patterns and virulence factors of enterococci isolates in hospitalized burn patients. BMC Research Notes. 2018;11(1):1-5. [DOI:10.1186/s13104-017-3088-5] [PMID] [PMCID]
- Hosseini MJ, Sadripour R. Antibiotic resistance pattern of bacteria isolated from nosocomial infection in internal surgery and neurosurgery intensive care unit (NICU) at a tertiary care hospital in Tehran, Iran. Biosci Biotechnol Res Asia. 2017;14(3):1095-102.
 [DOI:10.13005/bbra/2547]
- Leong KW, Cooley LA, Anderson TL, Gautam SS, McEwan B, Wells A, Wilson F, Hughson L, O'Toole RF. Emergence of vancomycin-resistant Enterococcus faecium at an Australian hospital: a whole genome sequencing analysis. Sci Rep. 2018;8(1):1-1. [DOI:10.1038/s41598-018-24614-6] [PMID] [PMCID]
- Lytsy B, Engstrand L, Gustafsson Å, Kaden R. Time to review the gold standard for genotyping vancomycin-resistant enterococci in epidemiology: comparing whole-genome sequencing with PFGE and MLST in three suspected outbreaks in Sweden during 2013-2015. Infect Genet Evol. 2017;54:74-80. [DOI:10.1016/j.meegid.2017.06.010] [PMID]
- Akpaka PE, Kissoon S, Jayaratne P, Wilson C, Golding GR, Nicholson AM, Lewis DB, Hermelijn SM, Wilson-Pearson A, Smith A. Genetic characteristics and molecular epidemiology of vancomycin-resistant enterococci isolates from Caribbean countries. PloS One. 2017;12(10) :e0185920. [PMID] [PMCID] [DOI:10.1371/journal.pone.0185920]
- Shahraki S, Rabi Nezhad Mousavi M. Determination of virulence factors in clinical multidrug resistance enterococci isolates at southeast of Iran. Jundishapur J Microbiol. 2017;10(5). [DOI:10.5812/jjm.45514]
- Arbabi L, Boustanshenas M, Rahbar M, Owlia P, Adabi M, Koohi SR, Afshar M, Fathizadeh S, Majidpour A, Talebi-Taher M. Antibiotic susceptibility pattern and virulence genes in Enterococcus spp. isolated from clinical samples of Milad hospital of Tehran, Iran. Arch Clin Infect Dis. 2016;11(3). [DOI:10.5812/archcid.36260]
- 23. Seppälä H, Skurnik M, Soini H, Roberts MC, Huovinen P. A novel erythromycin resistance

methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob Agents Chemother. 1998;42(2):257-62. [DOI:10.1128/AAC.42.2.257] [PMID] [PMCID]

- Ahmadpoor N, Ahmadrajabi R, Esfahani S, Hojabri Z, Moshafi MH, Saffari F. High-level resistance to erythromycin and tetracycline and dissemination of resistance determinants among clinical enterococci in Kerman-Iran. Med Princ Pract. 2021; Mar 31. Online ahead of print. [DOI:10.1159/000516216] [PMID] [PMCID]
- 25. Kristich CJ, Rice LB, Arias CA. Enterococcal infection-treatment and antibiotic resistance. In: Enterococci: From commensals to leading causes of drug resistant infection. Boston: Massachusetts Eye and Ear Infirmary; 2014.
- Jeong DW, Lee B, Heo S, Oh Y, Heo G, Lee JH. Two genes involved in clindamycin resistance of Bacillus licheniformis and Bacillus paralicheniformis identified by comparative genomic analysis. PloS One. 2020;15(4): e0231274. [DOI:10.1371/journal.pone.0231274] [PMID] [PMCID]
- Rengaraj R, Mariappan S, Sekar U, Kamalanadhan A. Detection of vancomycin resistance among Enterococcus faecalis and Staphylococcus aureus. Journal of clinical and diagnostic research: JCDR. 2016;10(2):DC04. [PMID] [PMCID] [DOI:10.7860/JCDR/2016/17552.7201]
- Zavaryani SM, Mirnejad R, Piranfar V, Moghaddam MM, Sajjadi N, Saeedi S. Assessment of susceptibility to five common antibiotics and their resistance pattern in clinical Enterococcus isolates. IJP. 2020;15(2):96. [DOI:10.30699/ijp.2020.114009.2236] [PMID] [PMCID]
- Soltani Nezhad S, Rabbani Khorasgani M, Emtiazi G. Analysis of zinc resistance gene in zinc and zinc oxide nanoparticles resistant Pseudomonas stutzeri SEE-1 isolated from soil. JMW. 2015;8(23):139-47.
- Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol. 2010;101(22):8599-605.
 [DOI:10.1016/j.biortech.2010.06.085] [PMID]
- Shirdam R, Khanafari A, Tabatabaei A. Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iran J Biotechnol. 2006;3(4):180-7.
- 32. Li C, Li Y, Ding C. The role of copper homeostasis at the host-pathogen axis: from bacteria to fungi.

Int J Mol Sci. 2019;20(1):175. [DOI:10.3390/ijms20010175] [PMID] [PMCID]

 Nami Y, Vaseghi Bakhshayesh R, Mohammadzadeh Jalaly H, Lotfi H, Eslami S, Hejazi MA. Probiotic properties of Enterococcus isolated from artisanal dairy products. Front Microbiol. 2019;10:300. [PMID] [PMCID] [DOI:10.3389/fmicb.2019.00300]

 Lavova M, Bezekova J, Canigova M, Krocko M, Domig K. Species identification of enterococci by biochemical test and molecular-genetic methods. Potravinarstvo. 2014;8(1):124-9.
 [DOI:10.5219/364]