year 15, Issue 5 (September - October 2021)                   Iran J Med Microbiol 2021, 15(5): 606-611 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nozohour Y, Jalilzadeh-amin G. Comparison of Antibacterial Activity of Trans-cinnamaldehyde, 1, 8 Cineole, and Pulegone Against Streptococcus equi subsp equi Isolated from Horse. Iran J Med Microbiol 2021; 15 (5) :606-611
URL: http://ijmm.ir/article-1-1376-en.html
1- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran , yasar_nozohour@yahoo.com
2- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
Abstract:   (2366 Views)

Background and Objective: Strangle in the horses is the commonest and the most significant infectious disease. An antibiotic of the first choice, commonly Penicillin, is used for antimicrobial therapy. Due to side effects and resistance against used antibiotics, interest in novel antimicrobial substances from other sources, including herbal medicine as safe agents has been raised. This study evaluated the antibacterial susceptibility profile of Streptococcus equi subsp equi in the confrontation of Trans-cinnamaldehyde, 1, 8 Cineole, and Pulegone on bacterial pathogens isolated from the horse.
Materials and Methods: Two hundred clinically isolates were studied by the single disk method to Ampicillin, Ciprofloxacin, Trimethoprim sulfamethoxazole, Gentamicin, Enrofloxacin, Chloramphenicol, Azithromycin, Cefotaxime, Oxytetracycline, Erythromycin, and Penicillin. Paper discs were prepared by impregnation in 10 µL essential oils main compounds (EOMC). The antibacterial activities of Trans-cinnamaldehyde, 1, 8 Cineole, and Pulegone were evaluated by microbroth dilution and disk diffusion methods against isolates of S. equi.
Results & Conclusion: All the isolates were resistant to Trimethoprim-sulfamethoxazole and Cefotaxime. The maximum growth inhibition zone was related to Oxytetracycline and Ampicillin. The growth inhibition zone diameter was 30 mm, 20 mm, and 26 mm for Trans-cinnamaldehyde, Pulegone, and 1, 8 Cineole, respectively. The results of the Minimum inhibitory concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) showed that Trans-cinnamaldehyde had the highest antibacterial activity compared to other EOMC against S. equi. This study indicated that Trans-cinnamaldehyde, 1, 8 Cineole, and Pulegone revealed antibacterial properties; therefore, these main constituents of the medicinal plant could be a safe candidate for the new antibacterial products.

Full-Text [PDF 524 kb]   (806 Downloads) |   |   Full-Text (HTML)  (1888 Views)  
Type of Study: Brief Original Article | Subject: Antimicrobial Substances
Received: 2021/06/30 | Accepted: 2021/08/11 | ePublished: 2021/09/20

References
1. Duffee LR, Stefanovski D, Boston RC, Boyle AG. Predictor variables for and complications associated with Streptococcus equi subsp equi infection in horses. J Am Vet Med Assoc. 2015 Nov 15; 247(10):1161-8. [DOI:10.2460/javma.247.10.1161] [PMID]
2. Constable PD, Hinchclif KW, Done SH, et al. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats .11th ed. 2017; 176-908.
3. Ghamarian A. compendium of data sheets for veterinary products. 2005-2006.
4. Zitterl-Eglseer K, Marschik T. Antiviral Medicinal Plants of Veterinary Importance: A Literature Review. Planta Med. 2020 Aug 10; 86(15):1058-1072. [DOI:10.1055/a-1224-6115] [PMID]
5. Danish P, Ali Q, Hafeez MM, Malik A. Antifungal and antibacterial activity of aloe vera plant extract. Biol Clin Sci Res J. 2020 Dec 12; e004. [DOI:10.54112/bcsrj.v2020i1.4]
6. Syafiq R, Sapuan SM, Zuhri MY, Ilyas RA, Nazrin A, Sherwani SF, Khalina A. Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers. 2020 Oct; 12(10):2403. [DOI:10.3390/polym12102403] [PMID] [PMCID]
7. Hameed IH, Altameme HJ, Mohammed GJ. Evaluation of antifungal and antibacterial activity and analysis of bioactive phytochemical compounds of Cinnamomum zeylanicum (Cinnamon bark) using gas chromatography-mass spectrometry. Oriental Journal of Chemistry. 2016; 32(4):1769. [DOI:10.13005/ojc/320406]
8. Munoz M, Torres-Pagan N, Peiro R, Guijarro R, Sanchez-Moreiras AM, Verdeguer M. Phytotoxic effects of three natural compounds: Pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in Mediterranean crops. Agronomy. 2020 Jun; 10(6):791. [DOI:10.3390/agronomy10060791]
9. Du GF, Yin XF, Yang DH, He QY, Sun X. Proteomic Investigation of the Antibacterial Mechanism of trans-Cinnamaldehyde against Escherichia coli. J Proteome Res. 2021; 20(5):2319-28. [DOI:10.1021/acs.jproteome.0c00847] [PMID]
10. Vuuren SV, Viljoen AM. Antimicrobial activity of limonene enantiomers and 1, 8‐cineole alone and in combination. Flavour Fragr J. 2007; 22(6):540-4. [DOI:10.1002/ffj.1843]
11. Santos FA, Rao VS. 1, 8-cineol, a food flavoring agent, prevents ethanol-induced gastric injury in rats. Dig Dis Sci. 2001; 46(2):331-7. [DOI:10.1023/A:1005604932760] [PMID]
12. Farley DR, Valerie H. The natural variation of the pulegone content in various oils of peppermint. J. Sci. Food. Agric. 2006; 31: 1143-1151. [DOI:10.1002/jsfa.2740311104]
13. Jalilzadeh-Amin G, Maham M, Dalir-Naghadeh B, Kheiri F. Effects of Mentha longifolia essential oil on ruminal and abomasal longitudinal smooth muscle in sheep. J. Essent. Oil Res. 2012; 24: 61-69. [DOI:10.1080/10412905.2012.646019]
14. Dhingra AK, Chopra B, Bhardwaj S, Dhar KL. Synthesis and characterization of novel pulegone derivatives as substitutes of 4-(1, 1 dimethylethyl) cyclohexan-1-ol acetate. J. Pharm. Res. 2011; 4: 19-21.
15. Cowan ST, Steel KJ. Cowan and Steel's Manual for the Identification of Medical Bacteria, third ed. Cambridge University Press, Cambridge. 1993.
16. Jorgensen J, Turnidge J. Susceptibility test methods: dilution and disk diffusion methods. In: Jorgensen J, Pfaller M, Carroll K, editors. Manual of Clinical Microbiology. 11th ed. Washington, DC: American Society of Microbiology. 2015; 1253-1273. [DOI:10.1128/9781555817381.ch71]
17. Nozohour, Y., Golmohammadi, R., Mirnejad, R., Fartashvand, M. Antibacterial Activity of Pomegranate (Punica granatum L.) Seed and Peel Alcoholic Extracts on Staphylococcus aureus and Pseudomonas aeruginosa Isolated From Health Centers. Journal of Applied Biotechnology Reports, 2018; 5(1): 32-36. [DOI:10.29252/JABR.01.01.06]
18. Nozohour Y, Golmohammadi R, Mirnejad R, Moghaddam MM, Fartashvand M. Comparison of Antibacterial Activities of Walnut (Juglans regia L.) and Pine (Pinus halepensis Mill.) Leaves Alcoholic Extracts against Bacteria Isolated from Burn Wound Infections. Acta Microbiologica Hellenica. 2019; 64(2):99-108.
19. Moghimi R, Aliahmadi A, Rafati H. Ultrasonic nanoemulsification of food grade trans-cinnamaldehyde: 1, 8-Cineol and investigation of the mechanism of antibacterial activity. Ultrason Sonochem. 2017; 35:415-21. [DOI:10.1016/j.ultsonch.2016.10.020] [PMID]
20. Shen S, Zhang T, Yuan Y, Lin S, Xu J, Ye H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control. 2015; 47:196-202. [DOI:10.1016/j.foodcont.2014.07.003]
21. Doyle AA, Stephens JC. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia. 2019; 139:104405. [DOI:10.1016/j.fitote.2019.104405] [PMID]
22. Schürmann M, Oppel F, Gottschalk M, Büker B, Jantos CA, Knabbe C, Hütten A, Kaltschmidt B, Kaltschmidt C, Sudhoff H. The therapeutic effect of 1, 8-Cineol on pathogenic bacteria species present in chronic rhinosinusitis. Front Microbiol. 2019; 10:2325. [DOI:10.3389/fmicb.2019.02325] [PMID] [PMCID]
23. Şimşek M, Duman R. Investigation of effect of 1, 8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacognosy research. 2017 Jul; 9(3):234. [DOI:10.4103/0974-8490.210329] [PMID] [PMCID]
24. Mahboubi M, Haghi G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J Ethnopharmacol. 2008; 119(2):325-7. [DOI:10.1016/j.jep.2008.07.023] [PMID]
25. Yaghoobpour M, Fozouni L, Ghaemi, P. A new solution for control of respiratory infection by Streptococcus equi isolated from horses in northern Iran. Bulg. J. Vet. Med. 2021.
26. Boukhebti H, Chaker AN, Belhadj H, Sahli F, Ramdhani M, Laouer H, Harzallah D. Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. essential oils. Der Pharmacia Lettre. 2011; 3(4):267-75.
27. Jazani NH, Ghasemnejad-Berenji H, Sadegpoor S. Antibacterial effects of Iranian Mentha pulegium essential oil on isolates of Klebsiella sp. Pakistan Journal of Biological Sciences. 2009 Jan 15; 12(2):183. [DOI:10.3923/pjbs.2009.183.185] [PMID]
28. Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines. 2017; 4(3):58. [DOI:10.3390/medicines4030058] [PMID] [PMCID]
29. Ojagh SM, Rezaei M, Razavi SH, Hosseini, SMH. Investigations of antibacterial activity cinnamon bark essential oil (Cinnamomumzeylanicum) in vitro antibacterial activity against five food spoilage bacteria. J Food Tech. 2012; 9(35): 67-76.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc