year 15, Issue 4 (July - August 2021)                   Iran J Med Microbiol 2021, 15(4): 458-464 | Back to browse issues page

XML Persian Abstract Print

1- Department of Microbiology, Malekan Branch, Islamic Azad University, Malekan, Iran ,
2- Department of Microbiology, Malekan Branch, Islamic Azad University, Malekan, Iran
Abstract:   (2458 Views)

Background and Objective: Beta-lactamases are the most important factors in the resistance to beta-lactam antibiotics among gram-negative bacteria, especially Klebsiella pneumoniae. Nowadays, the prevalence of infections caused by extended-spectrum β-lactamases (ESBLs)-producing K. pneumoniae is increasing, as one of the emerging health problems throughout the world. This study aimed to investigate the prevalence of blaTEM and blaSHV genes in K. pneumoniae isolated from the clinical specimens in Miandoab in West Azerbaijan province.
Materials and Methods: In this study, 120 K. pneumoniae strains which were isolated from the clinical specimens in Miandoab hospitals were used. Then, an antibiotic susceptibility test was performed to determine ESBL-producing K. pneumoniae isolates using the combined disk method. The presence of blaTEM and blaSHV genes was detected by the polymerase chain reaction (PCR) technique.
Results: In the combined disk method, of 120 strains of K. pneumoniae, 71 (59.2%) were positive for ESBL. The blaTEM and blaSHV ESBLs were detected in 35 (49.3%) and 31 (43.7%) strains respectively. Eventually, the co-existence of blaTEM and blaSHV was detected in 5 (7%) isolates.
Conclusion: blaTEM was the most common gene with a frequency of 49.3% in K. pneumonia isolates.

Full-Text [PDF 523 kb]   (1065 Downloads) |   |   Full-Text (HTML)  (1373 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2021/04/12 | Accepted: 2021/07/18 | ePublished: 2021/08/16

1. Friedländer C. Ueber die Schizomyceten bei der acuten fibrösen Pneumonie. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin. 1882;87(2):319-24. [DOI:10.1007/BF01880516]
2. Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 2016;80(3):629-61. [DOI:10.1128/MMBR.00078-15]
3. Tehrani FHE, Moradi M, Ghorbani N. Bacterial Etiology and Antibiotic Resistance Patterns in Neonatal Sepsis in Tehran during 2006-2014. Iranian journal of pathology. 2017;12(4):356. [DOI:10.30699/ijp.2017.27992]
4. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev. 2019;43(2):123-44. [DOI:10.1093/femsre/fuy043]
5. Taghinejad J, Barati B, Sadeghi A. A study of the drug resistance pattern of Group B Streptococcus isolated from urinary samples in the city of Salmas during the year 2015. New Cellular and Molecular Biotechnology Journal. 2018;8(30):79-84.
6. Mehdi RM, Javid T, Hossein MA. Drug susceptibility of E. coli strains isolated from patients with UTI by disc diffusion agar method in Salmas city of Iran. HealthMED.1146.
7. Wei J, Wenjie Y, Ping L, Na W, Haixia R, Xuequn Z. Antibiotic resistance of Klebsiella pneumoniae through β-arrestin recruitment-induced β-lactamase signaling pathway. Experimental and therapeutic medicine. 2018;15(3):2247-54. [DOI:10.3892/etm.2018.5728]
8. Zaniani FR, Meshkat Z, Nasab MN, Khaje-Karamadini M, Ghazvini K, Rezaee A, et al. The prevalence of TEM and SHV genes among extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae. Iranian journal of basic medical sciences. 2012;15(1):654.
9. Chaves J, Ladona MG, Segura C, Coira A, Reig R, Ampurdanés C. SHV-1 β-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrobial agents and chemotherapy. 2001;45(10):2856-61. [DOI:10.1128/AAC.45.10.2856-2861.2001]
10. Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology. 2009.
11. CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th Edition. CLSI standard M02 Wayne, PA: Clinical and Laboratory Standards Institute. 2018.
12. Wadekar MD, Anuradha K, Venkatesha D. Phenotypic detection of ESBL and MBL in clinical isolates of Enterobacteriaceae. Int J Curr Res Aca Rev. 2013;1(3):89-95.
13. Ahmed OB, Dablool A. Quality improvement of the DNA extracted by boiling method in gram negative bacteria. International Journal of Bioassays. 2017;6(4). [DOI:10.21746/ijbio.2017.04.004]
14. Mobin H, Nahaie MR, Amir mozafari N, Sadeghi J, M R. Enterobacteriaceae producing Extended-spectrum beta-lactamases (ESBL) and plasmid patterns in intensive care unit of children's hospital in Tabriz. Med J Tabriz Univ Med Sci. 2007;28:95-101.
15. Soroush Z, Ghane M. Molecular identification of CTX-M, TEM and SHV β-lactamases in â Klebsiella pneumoniae isolated from respiratory system of patients in the ICU of educational hospitals in Tehran. Feyz Journal of Kashan University of Medical Sciences. 2017;21(3):232-9.
16. Talebi TM, Golestanpour A. Symptomatic nosocomial urinary tract infection in ICU patients: identification of antimicrobial resistance pattern. 2009.
17. Archin T, Afzalian E, Kargar M, Y G. β lactamases genes and antibiotics resistance pattern of K. pneumoniae isolates collected from ICU patients of Namazi Hospital, Shiraz, Iran. Armaghan-e-Danesh. 2014;18(10):816-25.
18. Derakhshan S, Najar peerayeh F, Fallah F, Bakhshi B, Rahbar M, M. M-Z. Identification of expended spectrum betalactamase producing Klebsiella pneumonia isolated from intensive care unit (ICU) patiants in three hospitals in Iran. Infect Epidemiol Med. 2013;1(1):9-13.
19. Ahmed OB, Omar AO, Asghar AH, Elhassan MM, Al-Munawwarah A-M, Arabia S. Prevalence of TEM, SHV and CTX-M genes in Escherichia coli and Klebsiella spp Urinary Isolates from Sudan with confirmed ESBL phenotype. Life Sci J. 2013;10(2):191-5.
20. Ghafourian S, bin Sekawi Z, Sadeghifard N, Mohebi R, Neela VK, Maleki A, et al. The prevalence of ESBLs producing Klebsiella pneumoniae isolates in some major hospitals, Iran. The open microbiology journal. 2011;5:91. [DOI:10.2174/1874285801105010091]
21. Goyal A, Prasad KN, Prasad A, Gupta S, Ghoshal U, Ayyagari A. Extended spectrum beta-lactamases in Escherichia coli & Klebsiella pneumoniae & associated risk factors. Indian J Med Res. 2009;129(6):695-700.
22. Serefhanoglu K, Turan H, Timurkaynak FE, Arslan H. Bloodstream infections caused by ESBL-producing E. coli and K. pneumoniae: risk factors for multidrug-resistance. Braz J Infect Dis. 2009;13(6):403-7. [DOI:10.1590/S1413-86702009000600003]
23. Gröbner S, Linke D, Schütz W, Fladerer C, Madlung J, Autenrieth IB, et al. Emergence of carbapenem-non-susceptible extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany. Journal of medical microbiology. 2009;58(7):912-22. [DOI:10.1099/jmm.0.005850-0]
24. Lartigue MF, Zinsius C, Wenger A, Bille J, Poirel L, Nordmann P. Extended-spectrum beta-lactamases of the CTX-M type now in Switzerland. Antimicrob Agents Chemother. 2007;51(8):2855-60. [DOI:10.1128/AAC.01614-06]
25. Al-Agamy MH, Shibl AM, Hafez MM, Al-Ahdal MN, Memish ZA, Khubnani H. Molecular characteristics of extended-spectrum beta-lactamase-producing Escherichia coli in Riyadh: emergence of CTX-M-15-producing E. coli ST131. Ann Clin Microbiol Antimicrob. 2014;13(1):4. [DOI:10.1186/1476-0711-13-4]
26. Wang X-r, Chen J-c, Yu K, Jiang N, An S-c, Gao Z-c. Prevalence and characterization of plasmid-mediatedblaESBL with their genetic environment inEscherichia coliandKlebsiella pneumoniaein patients with pneumonia. Chinese medical journal. 2012;125(5):894-900.
27. Alo M, Anyim C, Igwe J, Elom M. Presence of extended spectrum β-lactamase (ESBL) E. coli and K. pneumonia isolated from blood cultures of hospitalized patients. Advances in Applied Science Research. 2012;3(2):821-5.
28. Roy S, Mukherjee S, Singh AK, Basu S. CTX-M-9 group extended-spectrum beta-lactamases in neonatal stool isolates: emergence in India. Indian J Med Microbiol. 2011;29(3):305-8. [DOI:10.4103/0255-0857.83919]
29. Ishii Y, Alba J, Kimura S, Shiroto K, Yamaguchi K. Evaluation of antimicrobial activity of β-lactam antibiotics using Etest against clinical isolates from 60 medical centres in Japan. International journal of antimicrobial agents. 2005;25(4):296-301. [DOI:10.1016/j.ijantimicag.2004.12.003]
30. Bratu S, Tolaney P, Karumudi U, Quale J, Mooty M, Nichani S, et al. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother. 2005;56(1):128-32. [DOI:10.1093/jac/dki175]
31. Mehd SDM, Asghar MS, Kazem SYM, Abdolaziz RL, Zahra R, Sovan AY. Antimicrobial Resistance Trends Of Klebsiella Spp. Isolated From Patients In Imam Khomeini Hospital. Payavard Salamat. 2012;6(4).
32. Amin A, Ghumro PB, Hussain S, A. H. Prevalence of antibiotic resistance among clinical isolates of Klebsiella pneumoniae isolated from a tertiary care hospital in Pakistan. Malays J Microbiol. 2009;5(2):81-6. [DOI:10.21161/mjm.13409]
33. Al Shara MA. Emerging antimicrobial resistance of klebsiella pneumonia strains isolated from pediatric patients in jordan. Iraqi J Med. 2011;7(2):29-32.
34. Tawfik AF, Alswailem AM, Shibl AM, Al-Agamy MH. Prevalence and genetic characteristics of TEM, SHV, and CTX-M in clinical Klebsiella pneumoniae isolates from Saudi Arabia. Microb Drug Resist. 2011;17(3):383-8. [DOI:10.1089/mdr.2011.0011]
35. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla TEM, bla SHV, bla CTX-M genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microbial drug resistance. 2010;16(1):49-53. [DOI:10.1089/mdr.2009.0096]
36. Ranjbar R, Memariani H, Sorouri R. Molecular Epidemiology of Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Strains Isolated from Children with Urinary Tract Infections. Archives of Pediatric Infectious Diseases. 2016;5(2):e39000. [DOI:10.5812/pedinfect.39000]
37. Abrar S, Ain NU, Liaqat H, Hussain S, Rasheed F, Riaz S. Distribution of bla CTX - M , bla TEM , bla SHV and bla OXA genes in Extended-spectrum-beta-lactamase-producing Clinical isolates: A three-year multi-center study from Lahore, Pakistan. Antimicrob Resist Infect Control. 2019;8(1):80. [DOI:10.1186/s13756-019-0536-0]
38. Ahmed MAS, Bansal D, Acharya A, Elmi AA, Hamid JM, Ahmed AMS, et al. Antimicrobial susceptibility and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae from intensive care units at Hamad Medical Corporation, Qatar. Antimicrobial resistance and infection control. 2016;5(1):1-6. [DOI:10.1186/s13756-016-0103-x]
39. Effendi MH, Bintari I, Aksono E, Hermawan I. Detection of blaTem Gene of Klebsiella pneumoniae Isolated from swab of food-producing animals in East Java. Tropical Animal Science Journal. 2018;41(3):174-8. [DOI:10.5398/tasj.2018.41.3.174]
40. Ugbo E, Anyamene C, Moses I, Iroha I, Babalola O, Ukpai E, et al. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae of clinical origin. Gene Reports. 2020;21:100909. [DOI:10.1016/j.genrep.2020.100909]
41. Zhong XS, Li YZ, Ge J, Xiao G, Mo Y, Wen YQ, et al. Comparisons of microbiological characteristics and antibiotic resistance of Klebsiella pneumoniae isolates from urban rodents, shrews, and healthy people. BMC Microbiol. 2020;20(1):12. [DOI:10.1186/s12866-020-1702-5]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.