year 15, Issue 4 (July - August 2021)                   Iran J Med Microbiol 2021, 15(4): 384-391 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Masoumi P, Mahmoodzadeh Hosseini H, Moosazadeh Moghaddam M, Keshavarz Lelekami A, Mohammadyari S, Mirhoseini S A. Clostridium Perfringens Toxin Types Associated with Meat: Review in Iran. Iran J Med Microbiol 2021; 15 (4) :384-391
URL: http://ijmm.ir/article-1-1312-en.html
1- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiatallah University of Medical Sciences, Tehran, Iran
2- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
3- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
4- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Iran
5- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiatallah University of Medical Sciences, Tehran, Iran , ali.mirh@gmail.com
Abstract:   (2460 Views)

Food poisoning due to Clostridium perfringens (C. perfringens) is a major food health problem, particularly in terms of meat consumption. Due to human’s susceptibility to this pathogen, detection methods and prevention measures should be implemented to reduce its incidence. Several pathogenic strains of C. perfringens have been identified so far. One of the potential concerns about this bacterium is its toxin-producing characteristic that causes food poisoning. It has seven toxin types (A-G) according to the existence of four unique toxin genes. This study aimed to assess the prevalence of food poisoning caused by C. perfringens in meat and meat-derived products in Iran. We collected and categorized all the available data on this issue in Iran. Moreover, we summarized some methods used to detect toxins and genes and finally placed a prevention section for clarifying how to prevent such events. The best method for preventing such an organism’s growth is by keeping foods in their normal state (hot and cold criteria) and chilling prepared foods in shallow containers as soon as possible.

Full-Text [PDF 549 kb]   (965 Downloads) |   |   Full-Text (HTML)  (1313 Views)  
Type of Study: Review Article | Subject: Food Microbiology
Received: 2021/04/11 | Accepted: 2021/06/5 | ePublished: 2021/08/16

References
1. Ali A, Parisi A, Conversano MC, Iannacci A, Emilio FD, Mercurio V, et al. Food-Borne Bacteria Associated with Seafoods: A Brief Review. J food Qual Hazards Control. 2020; 7:4-10. [DOI:10.18502/jfqhc.7.1.2446]
2. Centers for Disease Control and Prevention (CDC). Fatal foodborne Clostridium perfringens illness at a state psychiatric Hospital-Louisiana. Morb Mortal Wkly Rep. 2010;61(32):605.
3. Brynestad S, Granum PE. Clostridium Perfringens and foodborne infections. Int J Food Microbiol. 2002; 74:195-202 [DOI:10.1016/S0168-1605(01)00680-8]
4. Cevallos-Cevallos JM, Akins ED, Friedrich LM. Growth of Clostridium Perfringens during cooling of refried beans. J food Protect. 2012;75(10):1783-90. [DOI:10.4315/0362-028X.JFP-12-088] [PMID]
5. Jabbari AR, Afshari FS, Esmaelizad M. Molecular typing of toxigenic Clostridum perfringens isolated from sheep in Iran. Arch Razi Inst. 2011; 66(2):81-6.
6. Razmyar J, Kalidari GA, Tolooe A. Genotyping of Clostridium perfringens isolated from healthy and diseased ostriches (Struthio camelus). Iran J Microbiol. 2014;6(1):31.
7. Petit L, Gibert M, Popoff MR. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 1999; 7:104-110. [DOI:10.1016/S0966-842X(98)01430-9]
8. Rood JI, Adamsa V, Lacey J, Dena Lyrasa D, Bruce A, McClane BA, Stephen B, et al. Expansion of the Clostridium Perfringens toxin-based typing scheme. Anaerobe, 2018;53: 5-10. [DOI:10.1016/j.anaerobe.2018.04.011] [PMID] [PMCID]
9. Hatheway CL. Toxigenic clostridia. Clin Microbiol Rev. 1990; 3:66-98. [DOI:10.1128/CMR.3.1.66] [PMID] [PMCID]
10. Ridell J, Bjo¨rkroth J, Eisgru¨ber H. Prevalence of the enterotoxin gene and clonality of Clostridium perfringens strains associated with food-poisoning outbreaks. Journal of Food Protection. 1998; 61:240-243. [DOI:10.4315/0362-028X-61.2.240] [PMID]
11. Hatakka M, Halonen H. Foodborne and Waterborne Outbreaks in Finland in 1999. National Food Administration Research Notes. 2000;7.
12. Eisgruber H, Hauner G. Minced beef heart associated with a Clostridium perfringens food poisoning in a Munich old people's home. J Food Saf Food Qual. 2001;52, 63-6.
13. MP Doyle, LR Beuchat, TJ Montville, eds. Food Microbiology: Fundamentals and Frontiers. 2nd ed. Washington, DC: ASM Press, 2001.
14. Songer JG, Meer RM. Genotyping of Clostridium perfringens by polymerase chain reaction is a useful adjunct to diagnosis of clostridial enteric disease in animals. Anaerobe. 1996; 2, 197- 203. [DOI:10.1006/anae.1996.0027]
15. Cakmak O, Ormanci FSB, Tayfur M. Presence and contamination level of Clostridium perfringens in raw frozen ground poultry and poultry burgers. Turk J Vet Anim Sci. 2006; 30,101-105.
16. Hughes C, Gillespie IA, O'Brien SJ. Foodborne transmission of intestinal disease in England and Wales, 1992-2003. Food Control. 2007; 18, 766-72. [DOI:10.1016/j.foodcont.2006.01.009]
17. Satio M. Production of enterotoxin by C. perfringens derived from humans, animals, foods and the natural environment in Japan. J Food Protect. 1990; 53:115-8. [DOI:10.4315/0362-028X-53.2.115] [PMID]
18. Stern DH, Batty I. Pathogenic Clostridia 1st ed. Butterworth. London, U.K. 1975.
19. McDonel JL. Toxins of Clostridium perfringens types A, B, C, D, and E. In pharmacology of Bacterial toxins ed., Dorner, F. and Drews, H. 1986; 477-517.Oxford: pergamon press.
20. Baums CG, Schotte U, Amtsberg G. Diagnostic multiplex PCR for toxin genotyping of C. perfringens isolates. Vet Microbiol. 2004; 100(1-2):11-16. [DOI:10.1016/S0378-1135(03)00126-3]
21. Chon JW, Park JS, Hyeon JY, Park C, Song KY, Hong KW, et al. Development of Real-Time PCR for the Detection of Clostridium perfringens in Meats and Vegetables. J Microbiol Biotechnol. 2012; 22:530-4. [DOI:10.4014/jmb.1107.07064] [PMID]
22. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis. 2011; 17:7-15. https://doi.org/10.3201/eid1707.110572 https://doi.org/10.3201/eid1701.P21101 [DOI:10.3201/eid1701.P11101] [PMID]
23. Crouch E, Golden N. A risk assessment for Clostridium perfringens in ready-to-eat and partially cooked meat and poultry products. Retrieved June. 2005; 24:2010.
24. Heikinheimo A, Lindström M, Korkeala H. Enumerationand isolation of cpe-positive Clostridium perfringensspores from feces. J Clin Microbiol. 2004; 42, 3992-7. [DOI:10.1128/JCM.42.9.3992-3997.2004] [PMID] [PMCID]
25. Labbe R, Juneja V. Foodborne Infections and Intoxications: Chapter 6. Clostridium perfringens Gastroenteritis (Food Science and Technology, Clostridium perfringens gastroenteritis, 3rd ed. New York: Elsevier; 2006. [DOI:10.1016/B978-012588365-8/50008-6] [PMID]
26. Labbe, R. Guide to Foodborne Pathogens: Clostridium perfringens. 2001; 191-234.
27. Hobbs G, Cann D, Wilson, B. The incidence of organisms of the genes Clostridium in vacuum-packed fish in the United Kingdom. J Appl Bacteriol.1965; 28: 265-70. [DOI:10.1111/j.1365-2672.1965.tb02151.x] [PMID]
28. Taniguti T, Zenitani B. Incidence of Clostridium perfringens in fish. I. On the application of LAS medium to detection of Clostridium perfringens. J Food Hyg Soc Jpn. 1969; 10:199-203. [DOI:10.3358/shokueishi.10.199]
29. Lin YT, Labbe R. Enterotoxigenicity and genetic relatedness of Clostridium perfringens isolates from retail foods in the United States. Appl Environ Microbiol. 2003; 69:1642-6. [DOI:10.1128/AEM.69.3.1642-1646.2003] [PMID] [PMCID]
30. Weber D, Saviteer S, Rutala W. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents. Antimicrob Agents Chemother. 1998; 32:642-5. [DOI:10.1128/AAC.32.5.642] [PMID] [PMCID]
31. Lynch M, Painter J, Woodruff R. Surveillance for Foodborne-Disease Outbreaks United States, 1998-2002. Surveill Summar. 2006; 55(SS10);1-34.
32. Zhang T, Luo Q, Chen Y, Li T, Wen G, Zhang R, et al. Molecular epidemiology, virulence determinants and antimicrobial resistance of Campylobacter spreading in retail chicken meat in Central China. Gut Pathog. 2016; 8:48. [DOI:10.1186/s13099-016-0132-2] [PMID] [PMCID]
33. Gkiourtzidis K, Frey J, Bourtzi-Hatzopoulou E. PCR detection and prevalence of alpha-, beta-, beta 2-, epsilon-, iota- and enterotoxin genes in Clostridium perfringens isolated from lambs with clostridial dysentery. Vet Microbiol. 2001;82: 39-43. [DOI:10.1016/S0378-1135(01)00327-3]
34. Meer RR, Songer JG. Multiplex polymerase chain reaction assay for genotyping Clostridium perfringens. Am J Vet Res. 1997; 58:702-5.
35. Miwa N, Nishina T, Kubo S, et al. Most probable numbers of enterotoxigenic Clostridium perfringens in intestinal contents of domestic livestock detected by nested PCR. J Vet Med Sci; 1997; 59:557-60. https://doi.org/10.1292/jvms.59.89 [DOI:10.1292/jvms.59.557]
36. Al-Khaldi SF, Myers KM, Rasooly A. Genotyping of Clostridium perfringens toxins using multiple oligonucleotide microarray hybridization. Mol Cell Probes. 2004; 18:359-67. [DOI:10.1016/j.mcp.2004.05.006] [PMID]
37. Albini S, Brodard I, Jaussi A. Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet Microbiol. 2008; 127:179-85. [DOI:10.1016/j.vetmic.2007.07.024] [PMID]
38. Lund T, DeBuyser M, Granum PE. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol. 2000; 38:254-61. [DOI:10.1046/j.1365-2958.2000.02147.x] [PMID]
39. Ehling-Schulz M, Vukov N, Schulz A. Identification and partial characterization of the non-ribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl Environ Microbiol. 2005; 71:105-14. [DOI:10.1128/AEM.71.1.105-113.2005] [PMID] [PMCID]
40. Miyamoto K, Wen Q, Bruce A. Multiplex PCR Genotyping Assay That Distinguishes between Isolates of Clostridium perfringens Type A Carrying a Chromosomal Enterotoxin Gene (cpe) Locus, a Plasmid cpe Locus with an IS1470-Like Sequence, or a Plasmid cpe Locus with an IS1151 Sequence. J Clin Microbiol. 2004; 42(4): 1552-8. [DOI:10.1128/JCM.42.4.1552-1558.2004] [PMID] [PMCID]
41. Garmory HS, Chanter N, French NP. Occurrence of Clostridium perfringens b2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol Infect. 2000; 124:61-7 [DOI:10.1017/S0950268899003295] [PMID] [PMCID]
42. McClane BA, and Strouse RJ. Rapid detection of Clostridium perfringens type A enterotoxin by enzyme-linked immunosorbent assay. J Clin Microbiol. 1984; 19(2), 112-5. [DOI:10.1128/jcm.19.2.112-115.1984] [PMID] [PMCID]
43. Olsvik O, Granum PE, and Berdal BP. Detection of Clostridium perfringens type A enterotoxin by ELISA. Acta Pathol Microbiol Immunol Scand Sect B. 1982; 90:445-7. [DOI:10.1111/j.1699-0463.1982.tb00144.x] [PMID]
44. Chen K, Ahmed S, Sheng YJ, et al. Diagnostic Accuracy of Nucleic Acid Amplification Based Assays for Clostridium perfringens Associated Diseases: A Systematic Review and Meta-analysis. J Clin Microbiol, 2020; 24;58(9): e00363-20 [DOI:10.1128/JCM.00363-20]
45. Féraudet-Tarisse C, Mazuet C, Pauillac S, Krüger M, Lacroux C, Popoff MR, et al. Highly sensitive sandwich immunoassay and immunochromatographic test for the detection of Clostridial epsilon toxin in complex matrices. Plos one, 2017; 12(7), e0181013. [DOI:10.1371/journal.pone.0181013] [PMID] [PMCID]
46. Löser R, Bader M, Kuchar M, Wodtke R, Lenk J, Wodtke J, et al. Synthesis, 18 F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide. J Amino Acids, 2019; 1(2), 219-44. [DOI:10.1007/s00726-018-2657-9] [PMID]
47. Jiang D, Liu F, Liu C. Induction of an electrochemiluminescence sensor for DNA detection of Clostridium perfringens based on rolling circle amplification. Anal Methods, 2014; 6(5), 1558-62. [DOI:10.1039/C3AY41961D]
48. Uzal FA, Vidal JE, McClane BA, et al. Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases. Open Toxinol J. 2010; 2: 24-42. [DOI:10.2174/1875414701003020024] [PMID] [PMCID]
49. Doosti A, Pasand M, Mokhtari-Farsani A, et al. Prevalence of Clostridium perfringens type a isolates in different tissues of broiler chickens. Bulg J Vet Med. 2017; 1:20(1). [DOI:10.15547/bjvm.919]
50. Zandi E, Mohammadabadi MR, Ezzatkhah M. Typing of Toxigenic Isolates of Clostridium perfringens by Multiplex PCR in Ostrich. Iran J Appl Anim Sci. 2014; 1:4(4).
51. Afshari A, Jamshidi A, Razmyar J, et al. Molecular typing of Clostridium perfringens isolated from minced meat. Iran J Vet Sci Technol.2015;7(1):32-9.
52. Jabbari AR, Esmaelizad M, Samimi F. Identification of enterototxin harboring gene among Clostridium perfringens isolates with different toxin types in Iran. Iran J Vet Med. 2016;10(3):165-72.
53. Afshari A, Jamshidi A, Razmyar J, Rad M. Genotyping of Clostridium perfringens isolated from broiler meat in northeastern of Iran. Vet Res Forum. 2015;6(4) 279.
54. Shakerian A, Rahimi E, Mesbah J, et al. Molecular Detection of Clostridium Perfringens in Some Raw Animal Food Origin Products in Shahrekord. J Paramed Sci. 2017;11(4): 391-9.
55. Poursoltani M, Mohsenzadeh M, Razmyar J. Toxinotyping of Clostridium perfringens strains isolated from packed chicken portions. Iran J Med Microbiol. 2014; 10;8(1):9-17.
56. Ezatkhah M, Alimolaei M, Shahdadnejad N. The Prevalence of netB Gene in Isolated Clostridium perfringens from organic broiler farms suspected to necrotic enteritis. International J Enteric Pathog. 2016; 16;4(3):3-5667. [DOI:10.15171/ijep.2016.03]
57. Paredes-Sabja D, Torres JA, Setlow P, et al. Clostridium perfringens spore germination: characterization of germinants and their receptors. J Bacteriol. 2008; 190:1190-201. [DOI:10.1128/JB.01748-07] [PMID] [PMCID]
58. Banawas S, Paredes-Sabja D, Korza G, Li Y, Hao B, Setlow P, et al. The Clostridium perfringens germinant receptor protein GerKC is located in the spore inner membrane and is crucial for spore germination. J Bacteriol. 2013; 195:5084-91. [DOI:10.1128/JB.00901-13] [PMID] [PMCID]
59. Udompijitkul P, Alnoman M, Banawas S. et al. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates. Food Microbiol. 2014; 44:24-33. [DOI:10.1016/j.fm.2014.04.011] [PMID]
60. Alnoman M, Udompijitkul P, Paredes-Sabja D, et al. The inhibitory effects of sorbate and benzoate against Clostridium perfringens type A isolates. Food Microbiol, 2015; 48:89-98. [DOI:10.1016/j.fm.2014.12.007] [PMID]
61. Udompijitkul P, Paredes-Sabja D, Sarker MR. Inhibitory effects of nisin against Clostridium perfringens food poisoning and nonfood-borne isolates. J Food Sci. 2012; 77:51-6. [DOI:10.1111/j.1750-3841.2011.02475.x] [PMID]
62. Akhtar S, Paredes-Sabja D, Torres JA, et al. Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiol. 2009; 26:272-7. [DOI:10.1016/j.fm.2008.12.011] [PMID]
63. Udompijitkul P, Alnoman M, Paredes-Sabja D, et al. Inactivation strategy for Clostridium perfringens spores adhered to food contact surfaces. Food Microbiol, 2103; 34:328-36. [DOI:10.1016/j.fm.2013.01.003] [PMID]
64. Delves-Broughton J. Nisin as a food preservative. Food Aust. 2005; 57:525-7. [DOI:10.1201/9781420028737.ch7]
65. Nerandzic MM, Donskey CJ. Triggering germination represents a novel strategy to enhance killing of Clostridium difficile spores. PLoS One. 2010; 5: e12285. [DOI:10.1371/journal.pone.0012285] [PMID] [PMCID]
66. Ishimori T, Takahashi K, Goto M, Nakagawa S, Kasai Y, Konagaya Y, et al. Synergistic effects of high hydrostatic pressure, mild heating, and amino acids on germination and inactivation of Clostridium sporogenes spores. Appl Environ Microbiol. 2012; 78:8202-7. [DOI:10.1128/AEM.02007-12] [PMID] [PMCID]
67. Talukdar PK, Udompijitkul P, Hossain A. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells. Appl Environ Microbiol. 2016; 83(1), e02731-16. [DOI:10.1128/AEM.02731-16] [PMID] [PMCID]
68. Titball RW. Clostridium perfringens vaccines. Vaccine. 2009 Nov 5;27 Suppl 4: D44-7. [DOI:10.1016/j.vaccine.2009.07.047] [PMID]
69. Novak JS, Yuan JT. Increased inactivation of ozone-treated Clostridium perfringens vegetative cells and spores on fabricated beef surfaces using mild heat. J Food Prot. 2004; 67:342-6. [DOI:10.4315/0362-028X-67.2.342] [PMID]
70. Evelyn SFV. Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry. Int J Food Microbiol. 2015; 206(3):17-23. [DOI:10.1016/j.ijfoodmicro.2015.04.013] [PMID]
71. Gombas DE, Gomez RF. Sensitization of Clostridium perfringens spores to heat by gamma radiation. Appl Environ Microbiol. 1978; 36:403-7. [DOI:10.1128/aem.36.3.403-407.1978] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc