year 15, Issue 1 (January - February 2021)                   Iran J Med Microbiol 2021, 15(1): 46-66 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Habibinava F, Zolfaghari M R, Sabouri Shahrbabak S, Zargar M, Soleimani M. Isolation of Lytic Bacteriophages against MDR-Klebsiella pneumoniae and MDR-Enterobacter aerogenes from Sewage Samples: A Potential Tool for Medical Purposes. Iran J Med Microbiol. 2021; 15 (1) :46-66
1- Department of Microbiology, School of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran
2- Department of Microbiology, School of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran ,
3- Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
4- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
Abstract:   (2469 Views)

Background: This study aimed to isolate phages able to lyse some strains of multiple drug-resistant (MDR)-Klebsiella pneumoniae (named vB_Kp1 and vB_Kp2) and Enterobacter aerogenes (named vB_Ea1) from swage.
Materials and Methods: Different K. pneumoniae and E. aerogenes strains were isolated from clinical specimens during January-September 2018 in three hospitals of Amol, Mazandaran, Iran. Kirby-Bauer disc diffusion method was used to determine the resistance profiles of these isolates using different antibiotics. The MDR strains were selected for investigating the effect of isolated phages from wastewater and hospital sewage. The presence of phage was confirmed by plaque formation. The isolated bacteriophages were enriched, concentrated, and stained. Afterwards, a transmitting electron microscope (TEM) was applied to observe the morphology of the bacteriophages. Phage identification tests, including host range and one-step growth, were performed.
 Results:  The TEM analysis revealed that three phages had an icosahedral capsid and long contractile tail being classified as a member of the Myoviridae family. Phages were able to lyse 14 (56%) of the 25 MDR isolated bacterial strains. The one-step growth curve showed large bursts and short latent times.
Conclusions: The formation of clear plaques demonstrates the high lyse power of phages. Therefore, they have good potential for further analysis for clinical use as a therapeutic agent in the future.

Full-Text [PDF 1552 kb]   (876 Downloads) |   |   Full-Text (HTML)  (592 Views)  
Type of Study: Original | Subject: Medical Virology
Received: 2020/09/16 | Accepted: 2020/11/2 | ePublished: 2021/01/10

1. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013;11(3):297-308. [DOI:10.1586/eri.13.12] [PMID]
2. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacol Therapeut. 2015;40(4):277.
3. Van Duin D, Paterson DL. Multidrug-resistant bacteria in the community: trends and lessons learned. Infect Dis Clin. 2016;30(2):377-90. [DOI:10.1016/j.idc.2016.02.004] [PMID] [PMCID]
4. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010;2(3):263. [DOI:10.4103/0974-777X.68531] [PMID] [PMCID]
5. Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15-21. [DOI:10.1177/2049936115621709] [PMID] [PMCID]
6. Mulvey MR, Grant JM, Plewes K, Roscoe D, Boyd DA. New Delhi metallo-β-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerg Infect Dis. 2011;17(1):103. [DOI:10.3201/eid1701.101358] [PMID] [PMCID]
7. Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 2008;13(47):19044.
8. Goltsman G, Baumohl Y, Gal G, Buckman Z, Proshkin V, Lubart E. To check or not to check. Rectal ESBL colonization in hospitalized elderly patients. Am J Infect Control. 2018;46(11):1236-9. [DOI:10.1016/j.ajic.2018.05.010] [PMID]
9. Summers WC. Bacteriophage research: early history. Bacteriophages: Biology and applications. 2005:5-27. [DOI:10.1201/9780203491751.ch2]
10. Carlton RM. Phage therapy: past history and future prospects. Arch Immunol Ther Exp. 1999; 47:267-74.
11. Summers WC. The strange history of phage therapy. Bacteriophage. 2012;2(2):130-3. [DOI:10.4161/bact.20757] [PMID] [PMCID]
12. Squires RA. Bacteriophage therapy for management of bacterial infections in veterinary practice: what was once old is new again. N Z Vet J. 2018;66(5):229-35. [DOI:10.1080/00480169.2018.1491348] [PMID]
13. Furfaro LL, Chang BJ, Payne MS. Applications for bacteriophage therapy during pregnancy and the perinatal period. Front Microbiol. 2018; 8:2660. [DOI:10.3389/fmicb.2017.02660] [PMID] [PMCID]
14. LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis. 2018;5(4). US: Oxford University Press. [DOI:10.1093/ofid/ofy064] [PMID] [PMCID]
15. Clark JR. Bacteriophage therapy: history and future prospects. Future Virol. 2015;10(4):449-61. [DOI:10.2217/fvl.15.3]
16. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010;11(1):69-86. [DOI:10.2174/138920110790725401] [PMID]
17. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111-4. [DOI:10.4161/bact.1.2.14590] [PMID] [PMCID]
18. Ajideh R, Faramarzi MA, Yazdi MH, Pourmand MR. Phage Therapy as a New Approach in Treating Emerging Antibiotic Resistant Infections. Trends Pept Protein Sci. 2018;2(1):15-23.
19. Wayne, P., Clinical and Laboratory Standards Institute (CLSI) performance standards for antimicrobial disk diffusion susceptibility tests 19th ed. approved standard. CLSI document M100-S19, 2009. 29(2011): p. M100-S21.
20. Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol.2009.
21. Bourdin G, Schmitt B, Guy LM, Germond JE, Zuber S, Michot L, Reuteler G, Brüssow H. Amplification and purification of T4-like Escherichia coli phages for phage therapy: from laboratory to pilot scale. Appl Environ Microbiol. 2014;80(4):1469-76. [DOI:10.1128/AEM.03357-13] [PMID] [PMCID]
22. Yele AB, Thawal ND, Sahu PK, Chopade BA. Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm. Arch Virol. 2012;157(8):1441-50. [DOI:10.1007/s00705-012-1320-0] [PMID]
23. Santos SB, Carvalho CM, Sillankorva S, Nicolau A, Ferreira EC, Azeredo J. The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol. 2009;9(1):148. [DOI:10.1186/1471-2180-9-148] [PMID] [PMCID]
24. Carlson K, Miller E. Single-step growth. Molecular biology of bacteriophage. 1994. 4:434-7.
25. Popova AV, Zhilenkov EL, Myakinina VP, Krasilnikova VM, Volozhantsev NV. Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiol Lett. 2012;332(1):40-6. [DOI:10.1111/j.1574-6968.2012.02573.x] [PMID]
26. Birge EA. T4 bacteriophage as a model genetic system. In Bacterial and Bacteriophage Genetics 2000:171-214. [DOI:10.1007/978-1-4757-3258-0_6]
27. Brenner S, Horne RW. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959; 34:103-10. [DOI:10.1016/0006-3002(59)90237-9]
28. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature. 1970;227(5259):680-5. [DOI:10.1038/227680a0] [PMID]
29. Sen A, Ghosh AN. Physicochemical characterization of vibriophage N5. Virol J. 2005;2(1):1-4. [DOI:10.1186/1743-422X-2-28] [PMID] [PMCID]
30. Grazziotin AL, Vidal NM, Palmeiro JK, Dalla-Costa LM, Venancio TM. Genome sequencing of four multidrug-resistant Enterobacter aerogenes isolates from hospitalized patients in Brazil. Front Microbiol. 2016; 7:1649. [DOI:10.3389/fmicb.2016.01649] [PMID] [PMCID]
31. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80(3):629-61. [DOI:10.1128/MMBR.00078-15] [PMID] [PMCID]
32. Vasilev K, Reshedko G, Orasan R, Sanchez M, Teras J, Babinchak T, Dukart G, Cooper A, Dartois N, Gandjini H, Orrico R. A Phase 3, open-label, non-comparative study of tigecycline in the treatment of patients with selected serious infections due to resistant Gram-negative organisms including Enterobacter species, Acinetobacter baumannii and Klebsiella pneumoniae. J Antimicrob Chemother. 2008;62(suppl_1): i29-40. [DOI:10.1093/jac/dkn249] [PMID]
33. Cosgrove SE, Kaye KS, Eliopoulous GM, Carmeli Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch Intern Med. 2002;162(2):185-90. [DOI:10.1001/archinte.162.2.185] [PMID]
34. Podschun R. Phenotypic properties of Klebsiella pneumoniae and K. oxytoca isolated from different sources. Int J Hyg Envir Heal. 1990;189(6):527-35.
35. Kropinski AM. Bacteriophage research-What we have learnt and what still needs to be addressed. Res Microbiol. 2018;169(9):481-7. [DOI:10.1016/j.resmic.2018.05.002] [PMID]
36. Krut O, Bekeredjian-Ding I. Contribution of the immune response to phage therapy. J Immunol. 2018;200(9):3037-44. [DOI:10.4049/jimmunol.1701745] [PMID]
37. Kutateladze Á, Adamia R. Phage therapy experience at the Eliava Institute. Med Mal Infect. 2008;38(8):426-30. [DOI:10.1016/j.medmal.2008.06.023] [PMID]
38. Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastroentero. 2017;8(3):162. [DOI:10.4292/wjgpt.v8.i3.162] [PMID] [PMCID]
39. Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, Loessner MJ, Dong S, Pritchard DG, Lee JC, Becker SC. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother. 2015;70(5):1453-65. [DOI:10.1093/jac/dku552] [PMID] [PMCID]
40. Karumidze N, Kusradze I, Rigvava S, Goderdzishvili M, Rajakumar K, Alavidze Z. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca. Curr Microbiol. 2013;66(3):251-8. [DOI:10.1007/s00284-012-0264-7] [PMID]
41. Komijani M, Bouzari M, Rahimi F. Detection and characterization of a novel lytic bacteriophage (vB-KpneM-Isf48) against Klebsiella pneumoniae isolates from infected wounds carrying antibiotic-resistance genes (TEM, SHV, and CTX-M). Iran Red Crescent Med J. 2017. 19(2). [DOI:10.5812/ircmj.34475]
42. Zhao J, Zhang Z, Tian C, Chen X, Hu L, Wei X, Li H, Lin W, Jiang A, Feng R, Yuan J. Characterizing the Biology of Lytic Bacteriophage vB_EaeM_φEap-3 Infecting Multidrug-Resistant Enterobacter aerogenes. Front Microbiol. 2019; 10:420. [DOI:10.3389/fmicb.2019.00420] [PMID] [PMCID]
43. Li E, Wei X, Ma Y, Yin Z, Li H, Lin W, Wang X, Li C, Shen Z, Zhao R, Yang H. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes. Sci Rep. 2017;7(6). [DOI:10.1038/srep46805] [PMID] [PMCID]
44. Ackermann HW. Phage classification and characterization in Bacteriophages 2009. Springer. 2009:127-140. [DOI:10.1007/978-1-60327-164-6_13] [PMID]
45. Shahrbabak SS, Khodabandehlou Z, Shahverdi AR, Skurnik M, Ackermann HW, Varjosalo M, Yazdi MT, Sepehrizadeh Z. Isolation, characterization and complete genome sequence of PhaxI: a phage of Escherichia coli O157: H7. Microbiology. 2013;159(8):1629-38. [DOI:10.1099/mic.0.063776-0] [PMID]
46. Tamakoshi, M., et al., Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus. Bacteriophage, 2011:1(3):152-164. [DOI:10.4161/bact.1.3.16712] [PMID] [PMCID]
47. Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L, Rami-Shojaei S, Brüssow H. Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family Myoviridae. J Bacteriol. 2004;186(21):7069-83. [DOI:10.1128/JB.186.21.7069-7083.2004] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc