year 14, Issue 6 (November - December 2020)                   Iran J Med Microbiol 2020, 14(6): 512-542 | Back to browse issues page

XML Persian Abstract Print

1- Department of Laboratory Science, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
2- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
3- Department of Microbiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran ,
Abstract:   (10172 Views)
Acquired Immune Deficiency Syndrome (AIDS) is a descriptive type of immune system dysfunction disorder which is caused by HIV infection. Since its discovery, HIV has been responsible for the death of more than 25 million people worldwide, and many people are infected with HIV each year. Because of the structural complexity of the virus and the lack of a promising vaccine, several antiviral drugs, and nucleic acid therapies such as siRNA have been studied and evaluated for the HIV prevention. The antiviral treatments have considerably improved the quality and hope of life for the infected people, but along with the capacity to adapt to the virus, it has prevented further success. Nanotechnology approaches have had a positive impact on the prevention and treatment of different diseases. Various nanoparticles and substances have been evaluated for the antiviral drugs improvement for the prophylaxis and treatment of AIDS. Some nanoparticles which have been discussed in this article include liposomes, dendrimers, gold nanoparticles, polymeric nanoparticles, nanofibers, silver nanoparticles, and drug nanocrystals. In this review study, the nanotechnology approaches, the structure and properties of nanoparticles and their function in the prophylaxis and treatment of HIV were discussed.
Full-Text [PDF 1049 kb]   (2935 Downloads) |   |   Full-Text (HTML)  (2357 Views)  
Type of Study: Review Article | Subject: Nanotechnology In Medicine
Received: 2020/06/8 | Accepted: 2020/08/12 | ePublished: 2020/10/27

1. World Health Organization (WHO). HIV & AIDS. http://wwwwhoint/features/qa/71/en/indexhtml. 2010.
2. UNAIDS. http://dataunaidsorg/pub/FactSheet/2009/ 20091124 FS global enpdf. 2009.
3. (WHO) WHO. Immunization, Vaccines and Biologicals: HIV&AIDS. 2007.
4. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell stem cell. 2015;17(1):11-22. [DOI:10.1016/j.stem.2015.06.007] [PMID]
5. UNAIDS. Ambitious treatment targets: writing the final chapter of the AIDS epidemic. UNAIDS Geneva, Switzerland; 2014.
6. K. US. The Prevention Gap Report. UNAIDS; Geneva, Switzerland:2016.
7. UNAIDS U. Countdown to ZERO: global plan towards the elimination of new HIV infections among children by 2015 and keeping their mother alive. UNAIDS; 2011.
8. Life. UFTTL-cAtHFSfEaESo. Switzerland: UNAIDS. 2016.
9. UNAIDS. Miles to go-closing gaps, breaking barriers, righting injustices. Geneva: Joint United Nations Programme on HIV/AIDS. http://wwwunaidsorg/en/resources/documents/2018/global-aidsupdate (accessed June 4, 2019).
10. Ayieko J, Brown L, Anthierens S, Van Rie A, Getahun M, Charlebois ED, et al. "Hurdles on the path to 90-90-90 and beyond": qualitative analysis of barriers to engagement in HIV care among individuals in rural East Africa in the context of test-and-treat. PloS one. 2018;13(8). [DOI:10.1371/journal.pone.0202990] [PMID] [PMCID]
11. Stover J, Bollinger L, Izazola JA, Loures L, DeLay P, Ghys PD, et al. What is required to end the AIDS epidemic as a public health threat by 2030? The cost and impact of the fast-track approach. PloS one. 2016;11(5). [DOI:10.1371/journal.pone.0154893] [PMID] [PMCID]
12. Thalhauser S, Peterhoff D, Wagner R, Breunig M. Critical design criteria for engineering a nanoparticulate HIV-1 vaccine. Journal of Controlled Release. 2019. [DOI:10.1016/j.jconrel.2019.11.035] [PMID]
13. Fauci AS. An HIV vaccine is essential for ending the HIV/AIDS pandemic. Jama. 2017;318(16):1535-6. [DOI:10.1001/jama.2017.13505] [PMID]
14. Hemelaar J. The origin and diversity of the HIV-1 pandemic. Trends in molecular medicine. 2012;18(3):182-92. [DOI:10.1016/j.molmed.2011.12.001] [PMID]
15. Stone M, Bainbridge J, Sanchez AM, Keating SM, Pappas A, Rountree W, et al. Comparison of detection limits of fourth-and fifth-generation combination HIV antigen-antibody, p24 antigen, and viral load assays on diverse HIV isolates. Journal of clinical microbiology. 2018;56(8):e02045-17. [DOI:10.1128/JCM.02045-17] [PMID] [PMCID]
16. Gregson J, Tang M, Ndembi N, Hamers RL, Rhee S-Y, Marconi VC, et al. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: a multicentre retrospective cohort study. The Lancet infectious diseases. 2016;16(5):565-75. [DOI:10.1016/S1473-3099(15)00536-8]
17. Taylor BS, Sobieszczyk ME, McCutchan FE, Hammer SM. The challenge of HIV-1 subtype diversity. New England Journal of Medicine. 2008;358(15):1590-602. [DOI:10.1056/NEJMra0706737] [PMID] [PMCID]
18. Kumar Teli M, Mutalik S, Rajanikant G. Nanotechnology and nanomedicine: going small means aiming big. Current pharmaceutical design. 2010;16(16):1882-92. [DOI:10.2174/138161210791208992] [PMID]
19. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology & therapeutics. 2008;83(5):761-9. [DOI:10.1038/sj.clpt.6100400] [PMID]
20. Caruso F, Hyeon, T. & Rotello, V. M. Nanomedicine. Chem. Soc. Rev. 41, 2537-2538 (2012). [DOI:10.1039/c2cs90005j] [PMID]
21. McDonald TOea. in Global Approaches to Health and Safety Issues (ed. Dolez, P. I.) (Elsevier, 2015).
22. Owen AR, S. . Considerations for clinically-relevant nanomedicine therapies for chronic diseases. Nanomedicine 20, 3109-3119 (2015). [DOI:10.2217/nnm.15.135] [PMID]
23. Amjadi I, Rabiee M, Hosseini M, Mozafari M. Synthesis and characterization of doxorubicin-loaded poly (lactide-co-glycolide) nanoparticles as a sustained-release anticancer drug delivery system. Applied biochemistry and biotechnology. 2012;168(6):1434-47. [DOI:10.1007/s12010-012-9868-4] [PMID]
24. Weber N, Ortega P, Clemente MI, Shcharbin D, Bryszewska M, de la Mata FJ, et al. Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. J Control Release. 2008;132(1):55-64. [DOI:10.1016/j.jconrel.2008.07.035] [PMID]
25. Gonzalo T, Clemente MI, Chonco L, Weber ND, Diaz L, Serramia MJ, et al. Gene therapy in HIV-infected cells to decrease viral impact by using an alternative delivery method. ChemMedChem. 2010;5(6):921-9. [DOI:10.1002/cmdc.201000029] [PMID]
26. Sepulveda-Crespo D, Lorente R, Leal M, Gomez R, De la Mata FJ, Jimenez JL, et al. Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide. Nanomedicine. 2014;10(3):609-18. [DOI:10.1016/j.nano.2013.10.002] [PMID]
27. Cordoba EV, Pion M, Rasines B, Filippini D, Komber H, Ionov M, et al. Glycodendrimers as new tools in the search for effective anti-HIV DC-based immunotherapies. Nanomedicine. 2013;9(7):972-84. [DOI:10.1016/j.nano.2013.03.004] [PMID]
28. Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 2006;3(5):613-28. [DOI:10.1517/17425247.3.5.613] [PMID]
29. das Neves J, Amiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev. 2010;62(4-5):458-77. [DOI:10.1016/j.addr.2009.11.017] [PMID]
30. Sharma P, Garg S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev. 2010;62(4-5):491-502. [DOI:10.1016/j.addr.2009.11.019] [PMID]
31. Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond). 2010;5(2):269-85. [DOI:10.2217/nnm.10.1] [PMID] [PMCID]
32. Picraux T. Nanotechnology. In Encyclopaedia Britannica Deluxe Edition; Encyclopaedia Britannica: Chicago, IL, USA, 2010.
33. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18(3):241-68. [DOI:10.1163/156856207779996931] [PMID] [PMCID]
34. Tegart G. Nanotechnology: The technology for the 21st Century.
35. McNeil SE. Unique benefits of nanotechnology to drug delivery and diagnostics. Methods Mol Biol. 2011;697:3-8. [DOI:10.1007/978-1-60327-198-1_1] [PMID]
36. Ochekpe NA, Olorunfemi PO, Ngwuluka NC. Nanotechnology and drug delivery part 1: background and applications. Tropical journal of pharmaceutical research. 2009;8(3). [DOI:10.4314/tjpr.v8i3.44546]
37. Williams D. The relationship between biomaterials and nanotechnology. Biomaterials. 2008;29(12):1737. [DOI:10.1016/j.biomaterials.2008.01.003] [PMID]
38. Sanvicens N, Marco MP. Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends in biotechnology. 2008;26(8):425-33. [DOI:10.1016/j.tibtech.2008.04.005] [PMID]
39. Initiative USNN. Nanotechnology 101: What is it and how it works. Available online: (accessed on 5 December 2011).
40. Li S-D, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Molecular pharmaceutics. 2008;5(4):496-504. [DOI:10.1021/mp800049w] [PMID]
41. Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert opinion on drug delivery. 2006;3(5):613-28. [DOI:10.1517/17425247.3.5.613] [PMID]
42. Shahiwala A, Amiji MM. Nanotechnology-based delivery systems in HIV/AIDS therapy. 2007. [DOI:10.2217/17469600.1.1.49]
43. Shafiee A, Atala A. Tissue engineering: Toward a new era of medicine. Annual review of medicine. 2017;68:29-40. [DOI:10.1146/annurev-med-102715-092331] [PMID]
44. Naghavi Alhosseini S, Moztarzadeh F, Kargozar S, Dodel M, Tahriri M. Development of polyvinyl alcohol fibrous biodegradable scaffolds for nerve tissue engineering applications: In vitro study. International Journal of Polymeric Materials and Polymeric Biomaterials. 2015;64(9):474-80. [DOI:10.1080/00914037.2014.977893]
45. Ranjbar-Mohammadi M, Kargozar S, Bahrami SH, Joghataei M. Fabrication of curcumin-loaded gum tragacanth/poly (vinyl alcohol) nanofibers with optimized electrospinning parameters. Journal of industrial textiles. 2017;46(5):1170-92. [DOI:10.1177/1528083715613631]
46. Keles E, Song Y, Du D, Dong W-J, Lin Y. Recent progress in nanomaterials for gene delivery applications. Biomaterials science. 2016;4(9):1291-309. [DOI:10.1039/C6BM00441E] [PMID]
47. Serakinci N, Christensen R, Fahrioglu U, Sorensen FB, Dagnæs-Hansen F, Hajek M, et al. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biotherapy and Radiopharmaceuticals. 2011;26(6):767-73. [DOI:10.1089/cbr.2011.1024] [PMID]
48. Levy JA. HIV pathogenesis and long-term survival. Aids. 1993;7(11):1401-10. [DOI:10.1097/00002030-199311000-00001] [PMID]
49. Gilbert PB, McKeague IW, Eisen G, Mullins C, Guéye‐NDiaye A, Mboup S, et al. Comparison of HIV‐1 and HIV‐2 infectivity from a prospective cohort study in Senegal. Statistics in medicine. 2003;22(4):573-93. [DOI:10.1002/sim.1342] [PMID]
50. Reeves JD, Doms RW. Human immunodeficiency virus type 2. Journal of general virology. 2002;83(6):1253-65. [DOI:10.1099/0022-1317-83-6-1253] [PMID]
51. Adjorlolo-Johnson G, De Cock KM, Ekpini E, Vetter KM, Sibailly T, Brattegaard K, et al. Prospective comparison of mother-to-child transmission of HIV-1 and HIV-2 in Abidjan, Ivory Coast. Jama. 1994;272(6):462-6. [DOI:10.1001/jama.1994.03520060062033] [PMID]
52. Kanki P, De Cock K. Epidemiology and transmission of HIV-2. AIDS. 1994;8(Suppl 1):S85-S93.
53. Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science. 1994;265(5178):1587-90. [DOI:10.1126/science.7915856] [PMID]
54. Jaffar S, Grant AD, Whitworth J, Smith PG, Whittle H. The natural history of HIV-1 and HIV-2 infections in adults in Africa: a literature review. Bulletin of the World Health Organization. 2004;82:462-9.
55. De Cock KM, Adjorlolo G, Ekpini E, Sibailly T, Kouadio J, Maran M, et al. Epidemiology and transmission of HIV-2: why there is no HIV-2 pandemic. Jama. 1993;270(17):2083-6. [DOI:10.1001/jama.1993.03510170073033] [PMID]
56. Pepin J. The origins of AIDS: Cambridge University Press; 2011. [DOI:10.1017/CBO9781139005234]
57. UNAIDS W. Global report on the global AIDS epidemic 2010. 2013.
58. Ministry of Health [VietNam] HAeap. General Department of Preventive Medicine and HIV/AIDS Control, Ministry of Health, Hanoi, Vietnam, 2010.
59. UNAIDS. Young men and HIV: Culture, Poverty and Sexual Risk. http://dataunaidsorg/publications/IRC-pub04/ Young men and hiv enpdf. 2001.
60. Simon V, Ho DD, Karim QA. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. The Lancet. 2006;368(9534):489-504. [DOI:10.1016/S0140-6736(06)69157-5]
61. Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. The Journal of experimental medicine. 2004;200(6):761-70. [DOI:10.1084/jem.20041196] [PMID] [PMCID]
62. Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A, et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. Journal of virology. 2003;77(21):11708-17. [DOI:10.1128/JVI.77.21.11708-11717.2003] [PMID] [PMCID]
63. Brenchley JM, Douek D. HIV infection and the gastrointestinal immune system. Mucosal immunology. 2008;1(1):23-30. [DOI:10.1038/mi.2007.1] [PMID] [PMCID]
64. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. New England journal of medicine. 2000;342(13):921-9. [DOI:10.1056/NEJM200003303421303] [PMID]
65. Pilcher CD, Eron JJ, Galvin S, Gay C, Cohen MS. Acute HIV revisited: new opportunities for treatment and prevention. The Journal of clinical investigation. 2004;113(7):937-45. [DOI:10.1172/JCI21540] [PMID] [PMCID]
66. Levy JA. HIV and the pathogenesis of AIDS: American Society for Microbiology; 1994.
67. Lackner AA, Veazey RS. Current concepts in AIDS pathogenesis: insights from the SIV/macaque model. Annu Rev Med. 2007;58:461-76. [DOI:10.1146/] [PMID]
68. National Institute of Allergy and Infectious Diseases (NIAID). Treating HIV-infected People with Antiretrovirals Protects Partners from Infection .NIH News,. 2011 May.
69. Anglemyer A, Rutherford GW, Horvath T, Baggaley RC, Egger M, Siegfried N. Antiretroviral therapy for prevention of HIV transmission in HIV‐discordant couples. Cochrane database of systematic reviews. 2013(4). [DOI:10.1002/14651858.CD009153.pub3] [PMID] [PMCID]
70. Celum C, Baeten J. Tenofovir-based pre-exposure prophylaxis for HIV prevention: evidence and evolving questions. Current opinion in infectious diseases. 2012;25(1):51. [DOI:10.1097/QCO.0b013e32834ef5ef] [PMID] [PMCID]
71. HIV exposure through contact with body fluids, Prescrire Int 21, . April 2012;126 100-1, 3-5.
72. Horvath T, Madi BC, Iuppa IM, Kennedy GE, Rutherford GW, Read JS. Interventions for preventing late postnatal mother‐to‐child transmission of HIV. Cochrane database of systematic reviews. 2009(1). [DOI:10.1002/14651858.CD006734.pub2] [PMCID]
73. Coutsoudis A, Kwaan L, Thomson M. Prevention of vertical transmission of HIV-1 in resource-limited settings. Expert review of anti-infective therapy. 2010;8(10):1163-75. [DOI:10.1586/eri.10.94] [PMID]
74. Siegfried N, van der Merwe L, Brocklehurst P, Sint TT. Antiretrovirals for reducing the risk of mother‐to‐child transmission of HIV infection. Cochrane database of systematic reviews. 2011(7). [DOI:10.1002/14651858.CD003510.pub3]
75. Pirrone V, Wigdahl B, Krebs FC. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral research. 2011;90(3):168-82. [DOI:10.1016/j.antiviral.2011.03.176] [PMID]
76. Adams JL, Kashuba AD. Formulation, pharmacokinetics and pharmacodynamics of topical microbicides. Best practice & research Clinical obstetrics & gynaecology. 2012;26(4):451-62. [DOI:10.1016/j.bpobgyn.2012.01.004] [PMID] [PMCID]
77. Karim SSA, Baxter C. Overview of microbicides for the prevention of human immunodeficiency virus. Best Practice & Research Clinical Obstetrics & Gynaecology. 2012;26(4):427-39. [DOI:10.1016/j.bpobgyn.2012.01.010] [PMID] [PMCID]
78. Cohen CR, Brown J, Moscicki A-B, Bukusi EA, Paull JR, Price CF, et al. A phase I randomized placebo controlled trial of the safety of 3% SPL7013 Gel (VivaGel®) in healthy young women administered twice daily for 14 days. PloS one. 2011;6(1). [DOI:10.1371/journal.pone.0016258] [PMID] [PMCID]
79. McGowan I, Gomez K, Bruder K, Febo I, Chen BA, Richardson BA, et al. Phase 1 randomized trial of the vaginal safety and acceptability of SPL7013 gel (VivaGel®) in sexually active young women (MTN-004). AIDS (London, England). 2011;25(8):1057. [DOI:10.1097/QAD.0b013e328346bd3e] [PMID] [PMCID]
80. Price CF, Tyssen D, Sonza S, Davie A, Evans S, Lewis GR, et al. SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One. 2011;6(9). [DOI:10.1371/journal.pone.0024095] [PMID] [PMCID]
81. Moscicki A-B, Rupert K, Yifei M, Scott ME, Daud II, Bukusi EA, et al. Measurement of mucosal biomarkers in a phase 1 trial of intravaginal 3% SPL 7013 gel (VivaGel®) to assess expanded safety. Journal of acquired immune deficiency syndromes (1999). 2012;59(2):134. [DOI:10.1097/QAI.0b013e31823f2aeb] [PMID] [PMCID]
82. Malcolm RK, Boyd PJ, McCoy CF, Murphy DJ. Microbicide vaginal rings: technological challenges and clinical development. Advanced drug delivery reviews. 2016;103:33-56. [DOI:10.1016/j.addr.2016.01.015] [PMID]
83. Malcolm RK, Edwards K-L, Kiser P, Romano J, Smith TJ. Advances in microbicide vaginal rings. Antiviral research. 2010;88:S30-S9. [DOI:10.1016/j.antiviral.2010.09.003] [PMID]
84. Friend DR, Clark JT, Kiser PF, Clark MR. Multipurpose prevention technologies: products in development. Antiviral research. 2013;100:S39-S47. [DOI:10.1016/j.antiviral.2013.09.030] [PMID]
85. Mlcochova P, Sutherland KA, Watters SA, Bertoli C, de Bruin RA, Rehwinkel J, et al. A G1‐like state allows HIV‐1 to bypass SAMHD1 restriction in macrophages. The EMBO journal. 2017;36(5):604-16. [DOI:10.15252/embj.201696025] [PMID] [PMCID]
86. Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM, et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PloS one. 2010;5(1). [DOI:10.1371/journal.pone.0008805] [PMID] [PMCID]
87. Cole AL, Yang OO, Warren AD, Waring AJ, Lehrer RI, Cole AM. HIV-1 adapts to a retrocyclin with cationic amino acid substitutions that reduce fusion efficiency of gp41. The Journal of Immunology. 2006;176(11):6900-5. [DOI:10.4049/jimmunol.176.11.6900] [PMID]
88. Gallo SA, Wang W, Rawat SS, Jung G, Waring AJ, Cole AM, et al. θ-Defensins prevent HIV-1 Env-mediated fusion by binding gp41 and blocking 6-helix bundle formation. Journal of Biological Chemistry. 2006;281(27):18787-92. [DOI:10.1074/jbc.M602422200] [PMID]
89. Zhang M-Y, Borges AR, Ptak RG, Wang Y, Dimitrov AS, Alam SM, et al., editors. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1. MAbs; 2010: Taylor & Francis. [DOI:10.4161/mabs.2.3.11416] [PMID] [PMCID]
90. Chen W, Zhu Z, Feng Y, Dimitrov DS. Human domain antibodies to conserved sterically restricted regions on gp120 as exceptionally potent cross-reactive HIV-1 neutralizers. Proceedings of the National Academy of Sciences. 2008;105(44):17121-6. [DOI:10.1073/pnas.0805297105] [PMID] [PMCID]
91. Katakowski JA, Palliser D. siRNA-based topical microbicides targeting sexually transmitted diseases. Current opinion in molecular therapeutics. 2010;12(2):192.
92. Symonds GP, Johnstone HA, Millington ML, Boyd MP, Burke BP, Breton LR. The use of cell-delivered gene therapy for the treatment of HIV/AIDS. Immunologic research. 2010;48(1-3):84-98. [DOI:10.1007/s12026-010-8169-7] [PMID]
93. Zeller SJ, Kumar P. RNA-based gene therapy for the treatment and prevention of HIV: from bench to bedside. The Yale journal of biology and medicine. 2011;84(3):301.
94. Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. Journal of controlled release. 2013;167(1):29-39. [DOI:10.1016/j.jconrel.2012.12.023] [PMID]
95. Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HD. Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. Journal of pharmaceutical sciences. 2012;101(11):4046-66. [DOI:10.1002/jps.23300] [PMID]
96. Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome medicine. 2017;9(1):60. [DOI:10.1186/s13073-017-0450-0] [PMID] [PMCID]
97. Zhao Q-Q, Chen J-L, Lv T-F, He C-X, Tang G-P, Liang W-Q, et al. N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biological and Pharmaceutical Bulletin. 2009;32(4):706-10. [DOI:10.1248/bpb.32.706] [PMID]
98. Lee J, Yun K-S, Choi CS, Shin S-H, Ban H-S, Rhim T, et al. T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjugate chemistry. 2012;23(6):1174-80. [DOI:10.1021/bc2006219] [PMID]
99. Harris M, Alexander C, Wells C, Bumgardner J, Carpenter D, Jennings J. Chitosan for the delivery of antibiotics. Chitosan Based Biomaterials Volume 2: Elsevier; 2017. p. 147-73. [DOI:10.1016/B978-0-08-100228-5.00006-7] [PMID]
100. Muddineti OS, Shah A, Rompicharla SVK, Ghosh B, Biswas S. Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. International journal of biological macromolecules. 2018;118:857-63. [DOI:10.1016/j.ijbiomac.2018.06.114] [PMID]
101. Mahajan SD, Aalinkeel R, Law W-C, Reynolds JL, Nair BB, Sykes DE, et al. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. International journal of nanomedicine. 2012;7:5301. [DOI:10.2147/IJN.S25871] [PMID] [PMCID]
102. du Toit LC, Pillay V, Choonara YE. Nano-microbicides: challenges in drug delivery, patient ethics and intellectual property in the war against HIV/AIDS. Advanced drug delivery reviews. 2010;62(4-5):532-46. [DOI:10.1016/j.addr.2009.11.022] [PMID]
103. Mallipeddi R, Rohan LC. Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert opinion on drug delivery. 2010;7(1):37-48. [DOI:10.1517/17425240903338055] [PMID]
104. Mallipeddi R, Rohan LC. Progress in antiretroviral drug delivery using nanotechnology. International journal of nanomedicine. 2010;5:533. [DOI:10.2147/IJN.S7681] [PMID] [PMCID]
105. Khalil NM, Carraro E, Cótica LF, Mainardes RM. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert opinion on drug delivery. 2011;8(1):95-112. [DOI:10.1517/17425247.2011.543673] [PMID]
106. Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulations-opportunities and limitations. Drug Discovery Today: Technologies. 2012;9(2):e87-e95. [DOI:10.1016/j.ddtec.2011.12.001] [PMID]
107. Kim PS, Read SW. Nanotechnology and HIV: potential applications for treatment and prevention. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010;2(6):693-702. [DOI:10.1002/wnan.118] [PMID]
108. Hillaireau H, Le Doan T, Besnard M, Chacun H, Janin J, Couvreur P. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly (iso-butylcyanoacrylate) nanocapsules. International journal of pharmaceutics. 2006;324(1):37-42. [DOI:10.1016/j.ijpharm.2006.07.006] [PMID]
109. Hillaireau H, Le Doan T, Chacun H, Janin J, Couvreur P. Encapsulation of mono-and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. International journal of pharmaceutics. 2007;331(2):148-52. [DOI:10.1016/j.ijpharm.2006.10.031] [PMID]
110. De Jaeghere F, Allémann E, Kubel F, Galli B, Cozens R, Doelker E, et al. Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. Journal of controlled release. 2000;68(2):291-8. [DOI:10.1016/S0168-3659(00)00272-8]
111. Boudad H, Legrand P, Appel M, Coconnier M-H, Ponchel G. Formulation and cytotoxicity of combined cyclodextrin poly (alkylcyanoacrylate) nanoparticles on Caco-2 cells monolayers intended for oral administration of saquinavir. STP pharma sciences. 2001;11(5):369-75.
112. Leroux J-C, Cozens RM, Roesel JL, Galli B, Doelker E, Gurny R. pH-sensitive nanoparticles: an effective means to improve the oral delivery of HIV-1 protease inhibitors in dogs. Pharmaceutical research. 1996;13(3):485-7. [DOI:10.1023/A:1016073416332] [PMID]
113. Bell IR, Schwartz GE, Boyer NN, Koithan M, Brooks AJ. Advances in integrative nanomedicine for improving infectious disease treatment in public health. European journal of integrative medicine. 2013;5(2):126-40. [DOI:10.1016/j.eujim.2012.11.002] [PMID] [PMCID]
114. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano letters. 2010;10(9):3223-30. [DOI:10.1021/nl102184c] [PMID] [PMCID]
115. Endsley AN, Ho RJ. Enhanced anti-HIV efficacy of Indinavir after inclusion in CD4 targeted lipid nanoparticles. Journal of acquired immune deficiency syndromes (1999). 2012;61(4):417. [DOI:10.1097/QAI.0b013e3182653c1f] [PMID] [PMCID]
116. Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nature biotechnology. 2007;25(12):1444-54. [DOI:10.1038/nbt1367] [PMID] [PMCID]
117. Weber N, Ortega P, Clemente MI, Shcharbin D, Bryszewska M, de la Mata FJ, et al. Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. Journal of Controlled Release. 2008;132(1):55-64. [DOI:10.1016/j.jconrel.2008.07.035] [PMID]
118. Serramía MJ, Álvarez S, Fuentes-Paniagua E, Clemente MI, Sánchez-Nieves J, Gómez R, et al. In vivo delivery of siRNA to the brain by carbosilane dendrimer. Journal of Controlled Release. 2015;200:60-70. [DOI:10.1016/j.jconrel.2014.12.042] [PMID]
119. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nature medicine. 2009;15(3):285. [DOI:10.1038/nm.1932] [PMID] [PMCID]
120. Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. Journal of molecular biology. 2016;428(5):963-89. [DOI:10.1016/j.jmb.2015.10.014] [PMID] [PMCID]
121. Mamo T, Poland GA. Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. 2012. [DOI:10.1016/j.vaccine.2012.08.023] [PMID]
122. Yadav HK, Dibi M, Mohammad A, Srouji AE. Nanovaccines formulation and applications-a review. Journal of Drug Delivery Science and Technology. 2018;44:380-7. [DOI:10.1016/j.jddst.2018.01.015]
123. Sulczewski FB, Liszbinski RB, Romão PR, Junior LCR. Nanoparticle vaccines against viral infections. Archives of virology. 2018;163(9):2313-25. [DOI:10.1007/s00705-018-3856-0] [PMID]
124. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nature medicine. 2013;19(12):1597. [DOI:10.1038/nm.3409] [PMID]
125. Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends in biotechnology. 2011;29(6):294-306. [DOI:10.1016/j.tibtech.2011.02.004] [PMID] [PMCID]
126. Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, et al. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 2012;33(19):4957-64. [DOI:10.1016/j.biomaterials.2012.03.041] [PMID] [PMCID]
127. Zolnik B, González-Fernández Á, Sadrieh N. Dobrovolskaia. MA Nanoparticles and the Immune System. Endocrinology. 2010;151(2):458-65. [DOI:10.1210/en.2009-1082] [PMID] [PMCID]
128. Bui T, Dykers T, Hu S-L, Faltynek CR, Ho R. Effect of MTP-PE liposomes and interleukin-7 on induction of antibody and cell-mediated immune responses to a recombinant HIV-envelope protein. Journal of acquired immune deficiency syndromes. 1994;7(8):799-806.
129. Phillips NC, Gagné L, Ivanoff N, Riveau G. Influence of phospholipid composition on antibody responses to liposome encapsulated protein and peptide antigens. Vaccine. 1996;14(9):898-904. [DOI:10.1016/0264-410X(96)82949-5]
130. Shae D, Postma A, Wilson JT. Vaccine delivery: where polymer chemistry meets immunology. Future Science; 2016. [DOI:10.4155/tde-2016-0008] [PMID]
131. Akagi T, Baba M, Akashi M. Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine. Polymers in nanomedicine: Springer; 2011. p. 31-64. [DOI:10.1007/12_2011_150]
132. Kim H, Griffith TS, Panyam J. Poly (D, L-lactide-co-glycolide) nanoparticles as delivery platforms for TLR7/8 agonist-based cancer vaccine. Journal of Pharmacology and Experimental Therapeutics. 2019;370(3):715-24. [DOI:10.1124/jpet.118.254953] [PMID]
133. Urbanavicius D, Alvarez T, Such GK, Johnston AP, Mintern JD. The potential of nanoparticle vaccines as a treatment for cancer. Molecular immunology. 2018;98:2-7. [DOI:10.1016/j.molimm.2017.12.022] [PMID]
134. Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. European journal of pharmaceutical sciences. 2011;44(5):653-9. [DOI:10.1016/j.ejps.2011.10.012] [PMID]
135. Zhang L, Granick S. How to stabilize phospholipid liposomes (using nanoparticles). Nano letters. 2006;6(4):694-8. [DOI:10.1021/nl052455y] [PMID]
136. Allen TM. Liposomal drug formulations. Drugs. 1998;56(5):747-56. [DOI:10.2165/00003495-199856050-00001] [PMID]
137. Szebeni J. The interaction of liposomes with the complement system. Critical Reviews™ in Therapeutic Drug Carrier Systems. 1998;15(1). [DOI:10.1615/CritRevTherDrugCarrierSyst.v15.i1.20]
138. Désormeaux A, Bergeron MG. Liposomes as drug delivery system: a strategic approach for the treatment of HIV infection. Journal of drug targeting. 1998;6(1):1-15. [DOI:10.3109/10611869808997877] [PMID]
139. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery. 2005;4(2):145-60. [DOI:10.1038/nrd1632] [PMID]
140. Elizondo E, Moreno E, Cabrera I, Cordoba A, Sala S, Veciana J, et al. Liposomes and Other Vesicular Systems: Structural Characteristics, Methods of Preparation, and Use in Nanomedicine, Progress in Molecular Biology. Elsevier Inc; 2011. [DOI:10.1016/B978-0-12-416020-0.00001-2] [PMID]
141. Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Advanced drug delivery reviews. 2007;59(6):505-21. [DOI:10.1016/j.addr.2007.04.009] [PMID]
142. Garrigue J-S, Lambert G, Benita S. Self-emulsifying oral lipidbased formulations for improved delivery of lipophilic drugs. Microencapsulation: Methods and Industrial Applications. 2006;2:429-80. [DOI:10.1201/9781420027990.pt3]
143. Arias JL. Nanotechnology and drug delivery, volume one: nanoplatforms in drug delivery: CRC Press; 2014. [DOI:10.1201/b17271]
144. Cui Z, Patel J, Tuzova M, Ray P, Phillips R, Woodward JG, et al. Strong T cell type-1 immune responses to HIV-1 Tat (1-72) protein-coated nanoparticles. Vaccine. 2004;22(20):2631-40. [DOI:10.1016/j.vaccine.2003.12.013] [PMID]
145. Malavia NK, Zurakowski D, Schroeder A, Princiotto AM, Laury AR, Barash HE, et al. Liposomes for HIV prophylaxis. Biomaterials. 2011;32(33):8663-8. [DOI:10.1016/j.biomaterials.2011.07.068] [PMID] [PMCID]
146. Patel J, Galey D, Jones J, Ray P, Woodward JG, Nath A, et al. HIV-1 Tat-coated nanoparticles result in enhanced humoral immune responses and neutralizing antibodies compared to alum adjuvant. Vaccine. 2006;24(17):3564-73. [DOI:10.1016/j.vaccine.2006.01.065] [PMID]
147. Palliser D, Chowdhury D, Wang Q-Y, Lee SJ, Bronson RT, Knipe DM, et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature. 2006;439(7072):89-94. [DOI:10.1038/nature04263] [PMID]
148. Wu SY, Chang H-I, Burgess M, McMillan NA. Vaginal delivery of siRNA using a novel PEGylated lipoplex-entrapped alginate scaffold system. Journal of controlled release. 2011;155(3):418-26. [DOI:10.1016/j.jconrel.2011.02.002] [PMID]
149. Kim S-S, Peer D, Kumar P, Subramanya S, Wu H, Asthana D, et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Molecular therapy. 2010;18(2):370-6. [DOI:10.1038/mt.2009.271] [PMID] [PMCID]
150. Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. Nonviral delivery of self-amplifying RNA vaccines. Proceedings of the National Academy of Sciences. 2012;109(36):14604-9. [DOI:10.1073/pnas.1209367109] [PMID] [PMCID]
151. Aneja R, Grigoletto A, Nangarlia A, Rashad AA, Wrenn S, Jacobson JM, et al. Pharmacokinetic stability of macrocyclic peptide triazole HIV‐1 inactivators alone and in liposomes. Journal of Peptide Science. 2019;25(4):e3155. [DOI:10.1002/psc.3155] [PMID] [PMCID]
152. Désormeaux A, Bergeron MG. Lymphoid tissue targeting of anti-HIV drugs using liposomes. Methods in enzymology. 391: Elsevier; 2005. p. 330-51. [DOI:10.1016/S0076-6879(05)91019-7]
153. Kuzmina A, Vaknin K, Gdalevsky G, Vyazmensky M, Marks RS, Taube R, et al. Functional mimetics of the HIV-1 CCR5 co-receptor displayed on the surface of magnetic liposomes. PloS one. 2015;10(12). [DOI:10.1371/journal.pone.0144043] [PMID] [PMCID]
154. Li S, Rizzo M, Bhattacharya S, Huang L. Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene therapy. 1998;5(7):930-7. [DOI:10.1038/] [PMID]
155. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene therapy. 2008;15(21):1446-53. [DOI:10.1038/gt.2008.101] [PMID] [PMCID]
156. Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug discovery today. 2010;15(5-6):171-85. [DOI:10.1016/j.drudis.2010.01.009] [PMID]
157. Ionov M, Lazniewska J, Dzmitruk V, Halets I, Loznikova S, Novopashina D, et al. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. International journal of pharmaceutics. 2015;485(1-2):261-9. [DOI:10.1016/j.ijpharm.2015.03.024] [PMID]
158. Dzmitruk V, Szulc A, Shcharbin D, Janaszewska A, Shcharbina N, Lazniewska J, et al. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International journal of pharmaceutics. 2015;485(1-2):288-94. [DOI:10.1016/j.ijpharm.2015.03.034] [PMID]
159. Doll TA, Raman S, Dey R, Burkhard P. Nanoscale assemblies and their biomedical applications. Journal of The Royal Society Interface. 2013;10(80):20120740. [DOI:10.1098/rsif.2012.0740] [PMID] [PMCID]
160. Peng J, Wu Z, Qi X, Chen Y, Li X. Dendrimers as potential therapeutic tools in HIV inhibition. Molecules. 2013;18(7):7912-29. [DOI:10.3390/molecules18077912] [PMID] [PMCID]
161. Vacas-Cordoba E, Maly M, De la Mata FJ, Gomez R, Pion M, Muñoz-Fernández MÁ. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. International journal of nanomedicine. 2016;11:1281. [DOI:10.2147/IJN.S96352] [PMID] [PMCID]
162. Pirrone V, Wigdahl B, Krebs FC. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral Res. 2011;90(3):168-82. [DOI:10.1016/j.antiviral.2011.03.176] [PMID]
163. Sattin S, Daghetti A, Thepaut M, Berzi A, Sanchez-Navarro M, Tabarani G, et al. Inhibition of DC-SIGN-mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation. ACS Chem Biol. 2010;5(3):301-12. [DOI:10.1021/cb900216e] [PMID]
164. Fehres CM, Kalay H, Bruijns SC, Musaafir SA, Ambrosini M, Van Bloois L, et al. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens. Journal of controlled release. 2015;203:67-76. [DOI:10.1016/j.jconrel.2015.01.040] [PMID]
165. Baker Jr JR. Why I believe nanoparticles are crucial as a carrier for targeted drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2013;5(5):423-9. [DOI:10.1002/wnan.1226] [PMID]
166. Mishra V, Gupta U, Jain N. Surface-engineered dendrimers: a solution for toxicity issues. Journal of Biomaterials Science, Polymer Edition. 2009;20(2):141-66. [DOI:10.1163/156856208X386246] [PMID]
167. Zhao H, Li J, Xi F, Jiang L. Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS letters. 2004;563(1-3):241-5. [DOI:10.1016/S0014-5793(04)00284-4]
168. Wang W, Guo Z, Chen Y, Liu T, Jiang L. Influence of generation 2-5 of PAMAM dendrimer on the inhibition of Tat peptide/TAR RNA binding in HIV‐1 transcription. Chemical biology & drug design. 2006;68(6):314-8. [DOI:10.1111/j.1747-0285.2006.00454.x] [PMID]
169. Vacas-Córdoba E, Bastida H, Pion M, Hameau A, Ionov M, Bryszewska M, et al. HIV-antigens charged on phosphorus dendrimers as tools for tolerogenic dendritic cells-based immunotherapy. Current medicinal chemistry. 2014;21(16):1898-909. [DOI:10.2174/0929867321666131129114022] [PMID]
170. Hajimahdi Z, Zabihollahi R, Aghasadeghi M, Ashtiani SH, Zarghi A. Novel quinolone-3-carboxylic acid derivatives as anti-HIV-1 agents: design, synthesis, and biological activities. Medicinal Chemistry Research. 2016;25(9):1861-76. [DOI:10.1007/s00044-016-1631-x]
171. García-Gallego S, Díaz L, Jiménez JL, Gomez R, de la Mata FJ, Muñoz-Fernández MÁ. HIV-1 antiviral behavior of anionic PPI metallo-dendrimers with EDA core. European journal of medicinal chemistry. 2015;98:139-48. [DOI:10.1016/j.ejmech.2015.05.026] [PMID]
172. Kandi MR, Mohammadnejad J, Ardestani MS, Zabihollahi R, Soleymani S, Aghasadeghi MR, et al. Inherent anti-HIV activity of biocompatible anionic citrate-PEG-citrate dendrimer. Molecular biology reports. 2019;46(1):143-9. [DOI:10.1007/s11033-018-4455-6] [PMID]
173. Rupp R, Rosenthal SL, Stanberry LR. VivaGel™(SPL7013 Gel): A candidate dendrimer-microbicide for the prevention of HIV and HSV infection. International journal of nanomedicine. 2007;2(4):561.
174. Hornos Carneiro MF, Barbosa Jr F. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. Journal of Toxicology and Environmental Health, Part B. 2016;19(3-4):129-48. [DOI:10.1080/10937404.2016.1168762] [PMID]
175. Qiu T, Bozich J, Lohse S, Vartanian A, Jacob L, Meyer B, et al. Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles. Environmental Science: Nano. 2015;2(6):615-29. [DOI:10.1039/C5EN00037H]
176. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology. 2018;9(1):1050-74. [DOI:10.3762/bjnano.9.98] [PMID] [PMCID]
177. Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. Journal of pharmaceutical and biomedical analysis. 2018;161:344-76. [DOI:10.1016/j.jpba.2018.08.060] [PMID]
178. Thongkum W, Hadpech S, Tawon Y, Cressey TR, Tayapiwatana C. Semi-quantification of HIV-1 protease inhibitor concentrations in clinical samples of HIV-infected patients using a gold nanoparticle-based immunochromatographic assay. Analytica chimica acta. 2019;1071:86-97. [DOI:10.1016/j.aca.2019.04.060] [PMID]
179. Mohd-Zahid MH, Mohamud R, Abdullah CAC, Lim J, Alem H, Hanaffi WNW, et al. Colorectal cancer stem cells: a review of targeted drug delivery by gold nanoparticles. RSC Advances. 2020;10(2):973-85. [DOI:10.1039/C9RA08192E]
180. Zhang Z, Wang J, Chen C. Near‐infrared light‐mediated nanoplatforms for cancer thermo‐chemotherapy and optical imaging. Advanced Materials. 2013;25(28):3869-80. [DOI:10.1002/adma.201301890] [PMID]
181. Youssef AM, Abdel-Aziz MS, El-Sayed SM. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging materials. International journal of biological macromolecules. 2014;69:185-91. [DOI:10.1016/j.ijbiomac.2014.05.047] [PMID]
182. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews. 2012;41(6):2256-82. [DOI:10.1039/C1CS15166E] [PMID]
183. Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics. 2011;6(3):491. [DOI:10.1007/s11468-011-9228-1]
184. Alex S, Tiwari A. Functionalized Gold Nanoparticles: Synthesis, Properties and Applications--A Review. Journal of nanoscience and nanotechnology. 2015;15(3):1869-94. [DOI:10.1166/jnn.2015.9718] [PMID]
185. Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V. Enhanced mucosal immune responses against tetanus toxoid using novel delivery system comprised of chitosan‐functionalized gold nanoparticles and botanical adjuvant: Characterization, immunogenicity, and stability assessment. Journal of pharmaceutical sciences. 2014;103(11):3448-56. [DOI:10.1002/jps.24161] [PMID]
186. Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert opinion on drug delivery. 2010;7(6):753-63. [DOI:10.1517/17425241003777010] [PMID] [PMCID]
187. Liao H, Nehl CL, Hafner JH. Biomedical applications of plasmon resonant metal nanoparticles. 2006. [DOI:10.2217/17435889.1.2.201] [PMID]
188. García-Vallejo JJ, Unger WW, Kalay H, van Kooyk Y. Glycan-based DC-SIGN targeting to enhance antigen cross-presentation in anticancer vaccines. Oncoimmunology. 2013;2(2):e23040. [DOI:10.4161/onci.23040] [PMID] [PMCID]
189. Martínez‐Ávila O, Bedoya LM, Marradi M, Clavel C, Alcamí J, Penadés S. Multivalent manno‐glyconanoparticles inhibit DC‐SIGN‐mediated HIV‐1 trans‐infection of human T cells. ChemBioChem. 2009;10(11):1806-9. [DOI:10.1002/cbic.200900294] [PMID]
190. Quach QH, Kah JCY. Non-specific adsorption of complement proteins affects complement activation pathways of gold nanomaterials. Nanotoxicology. 2017;11(3):382-94. [DOI:10.1080/17435390.2017.1306131] [PMID]
191. Silva JM, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira M, et al. In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. Journal of Controlled Release. 2015;198:91-103. [DOI:10.1016/j.jconrel.2014.11.033] [PMID]
192. Bowman M-C, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C. Inhibition of HIV fusion with multivalent gold nanoparticles. Journal of the American Chemical Society. 2008;130(22):6896-7. [DOI:10.1021/ja710321g] [PMID] [PMCID]
193. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8-21. [DOI:10.1016/j.nano.2005.12.003] [PMID]
194. Neha B, Ganesh B, Preeti K. Drug delivery to the brain using polymeric nanoparticles: a review. International Journal of Pharmaceutical and Life Sciences. 2013;2(3):107-32. [DOI:10.3329/ijpls.v2i3.15457]
195. Shah LK, Amiji MM. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharmaceutical research. 2006;23(11):2638-45. [DOI:10.1007/s11095-006-9101-7] [PMID]
196. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine: Nanotechnology, Biology and Medicine. 2006;2(2):53-65. [DOI:10.1016/j.nano.2006.04.009] [PMID]
197. Ensign LM, Tang BC, Wang Y-Y, Terence AT, Hoen T, Cone R, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Science translational medicine. 2012;4(138):138ra79-ra79. [DOI:10.1126/scitranslmed.3003453] [PMID] [PMCID]
198. Zhang T, Sturgis TF, Youan B-BC. pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. European Journal of Pharmaceutics and Biopharmaceutics. 2011;79(3):526-36. [DOI:10.1016/j.ejpb.2011.06.007] [PMID] [PMCID]
199. Meng J, Sturgis TF, Youan B-BC. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. European Journal of Pharmaceutical Sciences. 2011;44(1-2):57-67. [DOI:10.1016/j.ejps.2011.06.007] [PMID] [PMCID]
200. Parboosing R, Maguire GE, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses. 2012;4(4):488-520. [DOI:10.3390/v4040488] [PMID] [PMCID]
201. Mohan T, Sharma C, Bhat AA, Rao D. Modulation of HIV peptide antigen specific cellular immune response by synthetic α-and β-defensin peptides. Vaccine. 2013;31(13):1707-16. [DOI:10.1016/j.vaccine.2013.01.041] [PMID]
202. Lim SH, Mao H-Q. Electrospun scaffolds for stem cell engineering. Advanced drug delivery reviews. 2009;61(12):1084-96. [DOI:10.1016/j.addr.2009.07.011] [PMID]
203. Gunn J, Zhang M. Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends in biotechnology. 2010;28(4):189-97. [DOI:10.1016/j.tibtech.2009.12.006] [PMID]
204. Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Engineering Part B: Reviews. 2011;17(5):349-64. [DOI:10.1089/ten.teb.2011.0238] [PMID] [PMCID]
205. Pant B, Park M, Park S-J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics. 2019;11(7):305. [DOI:10.3390/pharmaceutics11070305] [PMID] [PMCID]
206. Xu H, Lu X, Li J, Ding D, Wang H, Li X, et al. Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers. International journal of pharmaceutics. 2017;526(1-2):217-24. [DOI:10.1016/j.ijpharm.2017.04.081] [PMID]
207. Paskiabi FA, Bonakdar S, Shokrgozar MA, Imani M, Jahanshiri Z, Shams-Ghahfarokhi M, et al. Terbinafine-loaded wound dressing for chronic superficial fungal infections. Materials Science and Engineering: C. 2017;73:130-6. [DOI:10.1016/j.msec.2016.12.078] [PMID]
208. Kamble P, Sadarani B, Majumdar A, Bhullar S. Nanofiber based drug delivery systems for skin: A promising therapeutic approach. Journal of Drug Delivery Science and Technology. 2017;41:124-33. [DOI:10.1016/j.jddst.2017.07.003]
209. Agrahari V, Agrahari V, Meng J, Mitra AK. Electrospun Nanofibers in Drug Delivery: Fabrication, Advances, and Biomedical Applications. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices: Elsevier; 2017. p. 189-215. [DOI:10.1016/B978-0-323-42978-8.00009-7]
210. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B, et al. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydrate polymers. 2018;198:131-41. [DOI:10.1016/j.carbpol.2018.06.072] [PMID]
211. Ghafoor B, Aleem A, Ali MN, Mir M. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. Journal of Drug Delivery Science and Technology. 2018;48:82-7. [DOI:10.1016/j.jddst.2018.09.005]
212. Huang C, Soenen SJ, van Gulck E, Vanham G, Rejman J, Van Calenbergh S, et al. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012;33(3):962-9. [DOI:10.1016/j.biomaterials.2011.10.004] [PMID]
213. Ball C, Krogstad E, Chaowanachan T, Woodrow KA. Drug-eluting fibers for HIV-1 inhibition and contraception. PloS one. 2012;7(11). [DOI:10.1371/journal.pone.0049792] [PMID] [PMCID]
214. Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environmental science & technology. 2010;44(14):5649-54. [DOI:10.1021/es101072s] [PMID]
215. Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, et al. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chemical Engineering Journal. 2011;170(2-3):547-54. [DOI:10.1016/j.cej.2011.01.099] [PMID] [PMCID]
216. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug discovery today. 2015;20(5):595-601. [DOI:10.1016/j.drudis.2014.11.014] [PMID] [PMCID]
217. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of nanobiotechnology. 2011;9(1):30. [DOI:10.1186/1477-3155-9-30] [PMID] [PMCID]
218. Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale research letters. 2016;11(1):98. [DOI:10.1186/s11671-016-1311-2] [PMID] [PMCID]
219. Siddiqi KS, Husen A. Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale research letters. 2016;11(1):363. [DOI:10.1186/s11671-016-1580-9] [PMID] [PMCID]
220. Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale research letters. 2014;9(1):229. [DOI:10.1186/1556-276X-9-229] [PMID] [PMCID]
221. Lokina S, Stephen A, Kaviyarasan V, Arulvasu C, Narayanan V. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. European journal of medicinal chemistry. 2014;76:256-63. [DOI:10.1016/j.ejmech.2014.02.010] [PMID]
222. Saifuddin N, Wong C, Yasumira A. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry. 2009;6(1):61-70. [DOI:10.1155/2009/734264]
223. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry. 2007;42(5):919-23. [DOI:10.1016/j.procbio.2007.02.005]
224. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16(10):8894-918. [DOI:10.3390/molecules16108894] [PMID] [PMCID]
225. Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: The protective nanoshield against virus infection. Critical reviews in microbiology. 2016;42(1):46-56. [DOI:10.3109/1040841X.2013.879849] [PMID]
226. Lv X, Li Y, Cao W, Yan T, Li Y, Du B, et al. A label-free electrochemiluminescence immunosensor based on silver nanoparticle hybridized mesoporous carbon for the detection of Aflatoxin B1. Sensors and Actuators B: Chemical. 2014;202:53-9. [DOI:10.1016/j.snb.2014.05.012]
227. Elliott C. The effects of silver dressings on chronic and burns wound healing. British journal of nursing. 2010;19(15):S32-S6. [DOI:10.12968/bjon.2010.19.Sup5.77707] [PMID]
228. Aditya N, Vathsala P, Vieira V, Murthy R, Souto E. Advances in nanomedicines for malaria treatment. Advances in colloid and interface science. 2013;201:1-17. [DOI:10.1016/j.cis.2013.10.014] [PMID]
229. Aderibigbe BA. Metal-based nanoparticles for the treatment of infectious diseases. Molecules. 2017;22(8):1370. [DOI:10.3390/molecules22081370] [PMID] [PMCID]
230. Haggag EG, Elshamy AM, Rabeh MA, Gabr NM, Salem M, Youssif KA, et al. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. International journal of nanomedicine. 2019;14:6217. [DOI:10.2147/IJN.S214171] [PMID] [PMCID]
231. Ngeontae W, Janrungroatsakul W, Maneewattanapinyo P, Ekgasit S, Aeungmaitrepirom W, Tuntulani T. Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sensors and Actuators B: Chemical. 2009;137(1):320-6. [DOI:10.1016/j.snb.2008.11.003]
232. Zainal NA, Shukor SRA, Razak KA. Applying the taguchi method to optimise the size of silica nanoparticles entrapped with rifampicin for a drug delivery system. Journal of Engineering Science. 2015;11:9.
233. Lee P, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry. 1982;86(17):3391-5. [DOI:10.1021/j100214a025]
234. Narayanan KB, Park HH. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. European journal of plant pathology. 2014;140(2):185-92. [DOI:10.1007/s10658-014-0399-4]
235. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. Interaction of silver nanoparticles with HIV-1. Journal of nanobiotechnology. 2005;3(1):6. [DOI:10.1186/1477-3155-3-6] [PMID] [PMCID]
236. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. Journal of nanobiotechnology. 2010;8(1):1. [DOI:10.1186/1477-3155-8-1] [PMID] [PMCID]
237. Rabinow BE. Nanosuspensions in drug delivery. Nature reviews Drug discovery. 2004;3(9):785-96. [DOI:10.1038/nrd1494] [PMID]
238. Dolgin E. Long-acting HIV drugs advanced to overcome adherence challenge. Nature Publishing Group; 2014. [DOI:10.1038/nm0414-323] [PMID]
239. Nyaku AN, Kelly SG, Taiwo BO. Long-acting antiretrovirals: where are we now? Current HIV/AIDS Reports. 2017;14(2):63-71. [DOI:10.1007/s11904-017-0353-0] [PMID]
240. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of Vitamin E TPGS in drug delivery. European journal of pharmaceutical sciences. 2013;49(2):175-86. [DOI:10.1016/j.ejps.2013.02.006] [PMID]
241. Tuomela A, Liu P, Puranen J, Rönkkö S, Laaksonen T, Kalesnykas G, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. International journal of pharmaceutics. 2014;467(1-2):34-41. [DOI:10.1016/j.ijpharm.2014.03.048] [PMID]
242. Rahim H, Sadiq A, Khan S, Khan MA, Shah SMH, Hussain Z, et al. Aceclofenac nanocrystals with enhanced in vitro, in vivo performance: formulation optimization, characterization, analgesic and acute toxicity studies. Drug design, development and therapy. 2017;11:2443. [DOI:10.2147/DDDT.S140626] [PMID] [PMCID]
243. Hasegawa Y, Higashi K, Yamamoto K, Moribe K. Direct evaluation of molecular states of piroxicam/poloxamer nanosuspension by suspended-state NMR and Raman spectroscopies. Molecular pharmaceutics. 2015;12(5):1564-72. [DOI:10.1021/mp500872g] [PMID]
244. Lindfors L, Skantze P, Skantze U, Westergren J, Olsson U. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir. 2007;23(19):9866-74. [DOI:10.1021/la700811b] [PMID]
245. Jog R, Burgess DJ. Pharmaceutical amorphous nanoparticles. Journal of pharmaceutical sciences. 2017;106(1):39-65. [DOI:10.1016/j.xphs.2016.09.014] [PMID]
246. Jacobs C, Kayser O, Müller R. Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone. International journal of pharmaceutics. 2001;214(1-2):3-7. [DOI:10.1016/S0378-5173(00)00622-0]
247. Jain V, Kare P, Jain D, Singh R. Development and characterization of mucoadhesive nanosuspension of ciprofloxacin. Scanning electron microscopy (SEM). 2011;5:9.
248. Patravale V, Date AA, Kulkarni R. Nanosuspensions: a promising drug delivery strategy. Journal of pharmacy and pharmacology. 2004;56(7):827-40. [DOI:10.1211/0022357023691] [PMID]
249. Baert L, van't Klooster G, Dries W, François M, Wouters A, Basstanie E, et al. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. European Journal of Pharmaceutics and Biopharmaceutics. 2009;72(3):502-8. [DOI:10.1016/j.ejpb.2009.03.006] [PMID]
250. Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine: Nanotechnology, Biology and Medicine. 2008;4(4):273-82. [DOI:10.1016/j.nano.2008.06.002] [PMID]
251. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharmaceutical research. 2006;23(7):1417-50. [DOI:10.1007/s11095-006-0284-8] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.