year 15, Issue 1 (January - February 2021)                   Iran J Med Microbiol 2021, 15(1): 67-84 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heydarian M, Hatamian-Zarmi A, Amoabediny G, Ebrahimi-Hosseinzadeh B, Alvandi H, Doryab A et al . Growth Kinetics and Ganoderic Acid Production from Ganoderma lucidum GIRAN17: A Real-Time Monitoring Platform. Iran J Med Microbiol 2021; 15 (1) :67-84
URL: http://ijmm.ir/article-1-1069-en.html
1- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
2- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran , hatamian_a@ut.ac.ir
3- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
4- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
Abstract:   (2880 Views)

Background and Aim: Ganoderma lucidum is a traditional medicinal mushroom that has many therapeutic applications. However, the application of this beneficial fungus has been limited due to its secondary metabolite’s low production. Many investigations have been carried out to improve the production of G. lucidum as well as Ganoderic Acid (GA); however, prior studies suffer from the lack of sufficient monitoring platform. A real-time monitoring study could be useful to find more information through cultivation and evaluating secondary metabolite production.
Materials and Methods: In the current study, aerated shaken flasks (AF) with different culture mediums were used for online measurement of the respiration activity of G. lucidum in small scale bioreactors. Then, to find more information through G. lucidum growth, four factors, including biomass formation, GA, residual sugar, and gene expression were evaluated on different days.
Results: Online monitoring of cell proliferation demonstrated that GA starts to synthesize in the second growth phase as a partially growth-associated metabolite. High maximum biomass and GA production were obtained at an initial glucose concentration of 35 g/L with vitamin and KH2PO4. During fermentation, the YO2/GA and Y O2/X the rate of oxygen consumption rate per GA production and biomass formation, respectively, were introduced as beneficial parameters to scale-up the process.
Conclusions: A novel monitoring strategy was suggested which can be beneficial for future investigations.

Full-Text [PDF 2379 kb]   (1325 Downloads) |   |   Full-Text (HTML)  (1421 Views)  
Type of Study: Original Research Article | Subject: Microbial Biotechnology
Received: 2020/02/29 | Accepted: 2020/12/6 | ePublished: 2021/01/10

References
1. Kang Q, Chen S, Li S, Wang B, Liu X, Hao L, Lu J. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. International Journal of Biological Macromolecules., 2019; 124: 1137-1144. [DOI:10.1016/j.ijbiomac.2018.11.215] [PMID]
2. Sanodiya BS, Thakur GS, Baghel RK. Ganoderma lucidum: a potent pharmacological macrofungus, Curr Pharm Biotechnol., 2009; 10: 717-742. [DOI:10.2174/138920109789978757] [PMID]
3. Frisvad JC, Andersen B, Thrane U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi, Mycol Res., 2008; 112:231-240. [DOI:10.1016/j.mycres.2007.08.018] [PMID]
4. Kalantari-Dehaghi S, Hatamian-Zarmi A, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB, Nojoki F, Hamedi J, Hosseinkhani S. Effects of microbial volatile organic compounds on Ganoderma lucidum growth and ganoderic acids production in Co-v-cultures (volatile co-cultures). Prep Biochem Biotechnol. 2019; 49(3):286-297. [DOI:10.1080/10826068.2018.1541809] [PMID]
5. Gao JJ, Min BS, Ahn EM. New triterpene aldehydes, lucialdehydes AC, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells, Chem Pharm Bull., 2002; 50:837-840. [DOI:10.1248/cpb.50.837] [PMID]
6. Wu GS, Lu JJ, Guo JJ. Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells, Fitoterapia., 2012; 83: 408-414. [DOI:10.1016/j.fitote.2011.12.004] [PMID]
7. Fang, QH, Zhong JJ. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum, Process Biochem., 2002; 37:769-774. [DOI:10.1016/S0032-9592(01)00278-3]
8. Papinutti L. Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex, Bioresour Technol., 2010; 101:1941-1946. [DOI:10.1016/j.biortech.2009.09.076] [PMID]
9. Zhao W, Xu J, Zhong J. Bioresource Technology Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen-limiting conditions, Bioresour Technol., 2011; 102:8185-8190. [DOI:10.1016/j.biortech.2011.06.043] [PMID]
10. Xu P, Ding ZY, Qian Z. Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media, Enzyme Microb Technol., 2008; 42:325-331. [DOI:10.1016/j.enzmictec.2007.10.016]
11. Zhang WX, Zhong JJ. Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum, J Biosci Bioeng., 2010; 109:37-40. [DOI:10.1016/j.jbiosc.2009.06.024] [PMID]
12. Wei Z, Duan Y, Qian Y. Screening of Ganoderma strains with high polysaccharides and ganoderic acid contents and optimization of the fermentation medium by statistical methods, Bioprocess Biosyst Eng., 2014; 37: 1789-1797. [DOI:10.1007/s00449-014-1152-2] [PMID]
13. Kirk TV, Szita N. Oxygen transfer characteristics of miniaturized bioreactor systems, Biotechnol Bioeng., 2013; 110:1005-1019. [DOI:10.1002/bit.24824] [PMID] [PMCID]
14. Wagner R, Mitchell DA, Sassaki GL. Current Techniques for the Cultivation of Ganoderma lucidum for the Production of Biomass, Ganoderic Acid and Polysaccharides, Food Technol. Biotechnol., 2003; 41:371-382.
15. Keypour S, Rafat H, Riahi H. Qualitative analysis of ganoderic acids in Ganoderma lucidum from Iran and China by RP-HPLC and electrospray ionisation-mass spectrometry (ESI-MS, Food Chem., 2010; 119:1704-1708. [DOI:10.1016/j.foodchem.2009.09.058]
16. Heydarian MS, Hatamian-Zarmi A, Amoabediny G, Yazdian F, Doryab A. Synergistic Effect of Elicitors in Enhancement of Ganoderic Acid Production: Optimization and Gene Expression Studies. Applied food biotechnology. 2015; 2(3): 57-62.
17. Anderlei T, Zang W, Papaspyrou M, Büchs J. Online respiration activity measurement (OTR, CTR, RQ) in shake flasks, Biochem Eng J., 2004; 17:187-194. [DOI:10.1016/S1369-703X(03)00181-5]
18. Fang, QH, Zhong JJ. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites - Ganoderic acid and polysaccharide, Biochem Eng J., 2002; 10:61-65. [DOI:10.1016/S1369-703X(01)00158-9]
19. Tang YJ, Zhong JJ. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid, Enzyme Microb Technol., 2002; 31:20-28. [DOI:10.1016/S0141-0229(02)00066-2]
20. Amoabediny G, Rezvani M, Rashedi H. Application of a novel method for optimization of bioemulsan production in a miniaturized bioreactor, Bioresour Technol., 2010; 101:9758-9764. [DOI:10.1016/j.biortech.2010.07.009] [PMID]
21. Amoabediny G, Ziaie-Shirkolaee Y, Büchs J. Development of an unsteady-state model for a biological system in miniaturized bioreactors, Biotechnol Appl Biochem., 2009; 54:163-170. [DOI:10.1042/BA20090141] [PMID]
22. Amoabediny G, Büchs J. Modelling and advanced understanding of unsteady-state gas transfer in shaking bioreactors, Biotechnol Appl Biochem., 2007; 46:57-67. [DOI:10.1042/BA20060120] [PMID]
23. Xu JW, Xu YN, Zhong JJ. Production of individual ganoderic acids and expression of biosynthetic genes in liquid static and shaking cultures of Ganoderma lucidum, Appl Microbiol Biotechnol., 2010; 85:941-948. [DOI:10.1007/s00253-009-2106-5] [PMID]
24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods., 2001; 25: 402-408. [DOI:10.1006/meth.2001.1262] [PMID]
25. Ren A, Qin L, Shi L. Methyl jasmonate induces ganoderic acid biosynthesis in the basidiomycetous fungus Ganoderma lucidum, Bioresour Technol., 2010; 101:6785-6790. [DOI:10.1016/j.biortech.2010.03.118] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc