year 14, Issue 3 (May - Jun 2020)                   Iran J Med Microbiol 2020, 14(3): 186-200 | Back to browse issues page


XML Persian Abstract Print


1- Department of Biology, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
2- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran , hatamian_a@ut.ac.ir
Abstract:   (3714 Views)

Background: Chitosan is a natural polymer with special properties that are prepared and purified in the industry of crustaceans. In this study, Trametes versicolor fungus, which was obtained from the forests of northern Iran, was used due to its medicinal properties, and the extracted chitosan of this fungus was optimized and its antimicrobial properties were investigated.
Materials & Methods: To increase chitosan, four influential NaOH parameters, time, temperature, and biomass to NaOH ratio were performed by the Taguchi method. Fourier Transformed Infrared Spectrometry (FTIR) was identified, and the antibacterial properties of the disc release method were investigated against Escherichia coli and Staphylococcus aureus bacteria and the bacterial non-growth halo by millimeters.
Results: The optimal conditions of the variables were: 5.94 Molar, 4 hours, and 40 minutes, 65.6 degrees Celsius, and 1:25 ratio, respectively. Under these conditions, the amount of chitosan produced was equal to 0.261 g/L and the degree of deacetylation 78% was obtained. The antibacterial properties against E. coli gram-negative bacteria and S. aureus gram-positive bacteria were found to be 12±1 and 18±2, respectively.
Conclusion: Evidence has shown that four parameters had a positive effect on more chitosan production and the S. aureus is more sensitive to the resulting chitosan.

Full-Text [PDF 1180 kb]   (2359 Downloads) |   |   Full-Text (HTML)  (1453 Views)  
Type of Study: Original Research Article | Subject: Microbial Biotechnology
Received: 2020/01/19 | Accepted: 2020/06/16 | ePublished: 2020/05/21

References
1. Ribeiro B, Guedes de Pinho P, Andrade PB, Baptista P, Valentão P. Fatty acid composition of wild edible mushrooms species: A comparative study. Microchem J. 2009 Sep 1;93(1):29-35. [DOI:10.1016/j.microc.2009.04.005]
2. Synytsya A, Míčková K, Synytsya A, Jablonský I, Spěváček J, Erban V, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr Polym. 2009;76(4):548-56. [DOI:10.1016/j.carbpol.2008.11.021]
3. Ho CY, Lau CBS, Kim CF, Leung KN, Fung KP, Tse TF, et al. Differential effect of Coriolus versicolor ( Yunzhi ) extract on cytokine production by murine lymphocytes in vitro B. Int Immunopharmacol. 2004;4(12):1549-57. [DOI:10.1016/j.intimp.2004.07.021] [PMID]
4. Mengelizadeh N, … HJ-S and, 2015 U. Physicochemical Characterization of Biopolymer Chitosan Extracted from Shrimp Shells. 19422511592.
5. Harish Prashanth KV, Tharanathan RN. Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol. 2007 Mar 1;18(3):117-31. [DOI:10.1016/j.tifs.2006.10.022]
6. Ravi Kumar MN. A review of chitin and chitosan applications. React Funct Polym. 2000 Nov 1;46(1):1-27. [DOI:10.1016/S1381-5148(00)00038-9]
7. Muñoz G, Valencia C, Valderruten N, Ruiz-Durántez E, Zuluaga F. Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine. React Funct Polym. 2015 Jun 1;91-92:1-10. [DOI:10.1016/j.reactfunctpolym.2015.03.008]
8. Sathiyaseelan A, Shajahan A, Kalaichelvan PT, Kaviyarasan V. Fungal chitosan based nanocomposites sponges-An alternative medicine for wound dressing. Int J Biol Macromol. 2017 Nov 1;104:1905-15. [DOI:10.1016/j.ijbiomac.2017.03.188] [PMID]
9. Mokhtari-Hosseini Z-B, Hatamian-Zarmi A, Mohammadnejad J, Ebrahimi-Hosseinzadeh B. Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum : Optimization and characterization. Prep Biochem Biotechnol. 2018 Aug 9;48(7):662-70. [DOI:10.1080/10826068.2018.1487847] [PMID]
10. Mesa Ospina N, Ospina Alvarez SP, Escobar Sierra DM, Rojas Vahos DF, Zapata Ocampo PA, Ossa Orozco CP. Isolation of chitosan from Ganoderma lucidum mushroom for biomedical applications. J Mater Sci Mater Med. 2015;26(3):1-9. [DOI:10.1007/s10856-015-5461-z] [PMID]
11. Ospina Álvarez SP, Ramírez Cadavid DA, Escobar Sierra DM, Ossa Orozco CP, Rojas Vahos DF, Zapata Ocampo P, et al. Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. Biomed Res Int. 2014 Jan 15;2014:169071. [DOI:10.1155/2014/169071] [PMID] [PMCID]
12. Nitschke J, Altenbach H-J, Malolepszy T, Mölleken H. A new method for the quantification of chitin and chitosan in edible mushrooms. Carbohydr Res. 2011 Aug 16;346(11):1307-10. [DOI:10.1016/j.carres.2011.03.040] [PMID]
13. El-Hefian EA, Nasef MM, Yahaya AH. Preparation and Characterization of Chitosan/Poly(Vinyl Alcohol) Blended Films: Mechanical, Thermal and Surface Investigations. E-Journal Chem. 2011;8(1):91-6. [DOI:10.1155/2011/969062]
14. Abdel-Gawad KM, Hifney AF, Fawzy MA, Gomaa M. Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 2017 Feb 1;63:593-601. [DOI:10.1016/j.foodhyd.2016.10.001]
15. Tajdini F, Amini MA, Nafissi-Varcheh N, Faramarzi MA. Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. Int J Biol Macromol. 2010 Aug 1;47(2):180-3. [DOI:10.1016/j.ijbiomac.2010.05.002] [PMID]
16. Kumar HMPN, Prabhakar MN, Prasad CV, Rao KM, Kumar TVA, Rao KC, et al. Compatibility studies of chitosan / PVA blend in 2 % aqueous acetic acid solution at 30 ◦ C. Carbohydr Polym. 2010;82(2):251-5. [DOI:10.1016/j.carbpol.2010.04.021]
17. Wang W-P, Du Y-M, Wang X-Y. Physical properties of fungal chitosan. World J Microbiol Biotechnol. 2008 Nov 17;24(11):2717-20. [DOI:10.1007/s11274-008-9755-x]
18. Kim WJ, Lee WG, Theodore K, Chang HN. Optimization of culture conditions and continuous production of chitosan by the fungi,Absidia coerulea. Biotechnol Bioprocess Eng. 2001 Feb;6(1):6-10. [DOI:10.1007/BF02942243]
19. Andipan, Chatterjee S, Chatterjee BP, Guha AK. Influence of plant growth hormones on the growth of Mucor rouxii and chitosan production. Microbiol Res. 2009 Jan 1;164(3):347-51 [DOI:10.1016/j.micres.2007.05.003] [PMID]
20. Tayel AA, Moussa S, Opwis K, Knittel D, Schollmeyer E, Nickisch-Hartfiel A. Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol. 2010 Jul;47(1):10-4. [DOI:10.1016/j.ijbiomac.2010.04.005] [PMID]
21. Jadhav AB, Diwan AD. Studies on antimicrobial activity and physicochemical properties of the chitin and chitosan isolated from shrimp shell waste. Indian J Geo-Marine Sci. 2018;47(3):674-80.
22. Prabha AR, Sivakumar K. Antimicrobial Activity of Chitosan Extracted from Prawn Shell. Indian J Appl Microbiol. 2017;20(1):1-7. [DOI:10.46798/ijam.2017.v20i01.001]
23. Rakkhumkaew N, Pengsuk C. Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread. Food Sci Biotechnol. 2018;27(4):1201-8. [DOI:10.1007/s10068-018-0332-2] [PMID] [PMCID]
24. Ahamed MIN, Gomathi N, Ragul V, Priya M, Priya R, Rumaan RS, et al. Novel Preparation of Chitosan from Crab Shell using Probe Sonicator and its Antibacterial activity. 2018;6(8):133-6.
25. Kulawik P, Jamróz E, Özogul F. Chitosan role for shelf-life extension of seafood. Environ Chem Lett. 2019;(0123456789). [DOI:10.1007/s10311-019-00935-4]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.