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 ABSTRACT 
 

Background and Aim: Cutaneous leishmaniasis is a significant public health issue worldwide. Cutaneous leishmaniasis is the 
most prevalent in the world among the different types of leishmaniasis. Currently, available medications have had no 
discernible influence on the disease's progression. Up to now, there has been no approved cutaneous leishmaniasis vaccine. 
New developments in vaccination might be a potential way to come up with a vaccination that is successful for the treatment 
of cutaneous leishmaniasis. 

Materials and Methods: This research was conducted to learn more about an effective vaccine for Leishmania major, the 
ailment's primary cause of CL, which was designed using computational methods. Thus, a multiepitope protein was designed 
by utilizing potential immune system epitopes, including predicted MHC class I, MHC class II, Cytotoxic T lymphocytes, B-
cell, and Interferon-gamma epitopes of Cysteine protease b (CPB), Leishmania homologue of activated C kinase (LACK), and 
Kinetoplastid membrane protein-11 (KMP-11) antigenic proteins. In order to enhance vaccine immunogenicity, two 
resuscitation-promoting factors of Mycobacterium tuberculosis were used as adjuvants. Final epitopes were matched with 
suitable linkers to construct the recombinant structure. The physicochemical and immune-based characteristics of the 
designed vaccine have been forecasted by using different tools. Moreover, homogeneity modeling was performed to obtain 
a high-quality 3D structure, followed by refinement and validation. Finally, the codon optimization based on E. coli resulted 
in a higher CAI value and optimal GC content, followed by combining it in the pET-14b cloning vector.  

Results:  Evaluation of the various characteristics of the designed vaccine showed that it is an immunogenic and non-
allergenic antigen that can induce immune responses against Leishmania major infection, which could be promising for 
cutaneous leishmaniasis. 

Conclusion:  Research shows that a recombinant vaccine can be an effective candidate against cutaneous leishmaniasis.  
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1. Introduction 
Leishmaniasis is one of the most important 

infectious diseases, and zoonosis caused by 
Leishmania parasites and is the most important 
tropical disease after malaria (1, 2). Leishmaniasis is 
one of the primary transferable global health issues in 
many tropical and subtropical countries and it is 

endemic in 102 countries (3-5). According to the 
World Health Organization (WHO) report, more than 
350 million people are at risk of leishmaniasis 
infection. Annually 200,000-400,000 people have 
visceral leishmaniasis (VL) and 700,000-1200,000 
people have cutaneous leishmaniasis (CL). The disease 
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has now spread to some non-endemic regions. The 
disease burden (daily) is reported to be 3.3 million 
people; clinical manifestations are cutaneous (CL), 
cutaneous mucosal (MCL), and visceral (VL) (6-10). 

Cutaneous leishmaniasis (CL) is the most common 
form of leishmaniasis, transmitted to humans by biting 
a female sandfly. One of the causes of this disease is 
the intracellular parasite Leishmania major (11, 12). 
Cutaneous leishmaniasis causes ugly ulcers that 
remain in place for a long time. It also leaves scars 
after healing and, in terms of beauty and psychological 
effects on the patient, causes major problems (13, 14).  

The only treatments available for cutaneous 
leishmaniasis are pentavalent antimonials, 
amphotericin B, and pentamidine. However, drug-
resistant and drug toxicity are two serious concerns, 
which inevitably limit the chemotherapeutic options. 
Hence, preventive strategies such as vaccines may 
seem more useful in combating cutaneous 
leishmaniasis (15). Unfortunately, despite all the 
efforts made by applying different vaccination 
strategies, no vaccine is available to humans available 
against leishmaniasis (16-18). 

Scientists have studied the production of various 
vaccines, such as a killed parasite, subunit, and DNA 
(19). A small number of vaccines available to combat 
Leishmania parasites have entered the clinical phase, 
so many studies are needed to find a way to treat 
leishmaniasis (13).  

The most important factor in designing a strong 
vaccine for CL, is identifying the host immunity against 
L. major (20). During CL infection, the leishmaniasis 
parasite enters the macrophage of an infected person, 
activating the Th1 and Th2 responses. Th1 responses 
produce interferon-gamma and IL-2. Th2 responses 
produce antibodies and cytokines IL-10 and IL-4 (21). 

One of the significant factors in immunization is that 
there are epitopes in vaccination that the immune 
system recognizes. The epitope is the fragment of the 
antigen which is detected by the immune system. 
Therefore, in the structure of novel vaccines 
(Multiepitope peptide vaccines), the identification of 
immunogenic epitopes could be very practical (22, 23). 

Bioinformatics tools have boosted the recognition 
of the epitopes (24). Bioinformatics is modern science 
that uses computers, computer software, and 
databases to answer biological problems, especially in 
the cellular and molecular fields. Bioinformatics is an 
online tool based on various databases and 
algorithms, which is created and applied to predict 
protein structures, cellular and molecular properties, 
epitopes, and more (25, 26). 

Identification of effective antigens and appropriate 
adjuvants are able to increase the potency and 
immunogenicity of novel vaccines (27, 28). 

In this study, LACK, CPB, and KMP-11 proteins, 
which are candidate proteins for the CL vaccine, were 
selected for the study. 

Kinetoplastid membrane protein 11 (KMP11) is a 
complex protein highly associated with Leishmania 
promastigotes lipophosphoglycan. Lipophos-
phoglycan is strongly antigenic to human T cells. 
KMP11 is a protein specific to Kinetoplastida, capable 
of building innate and adaptive immunity against 
Leishmania. Among the different Leishmania 
molecules known as possible vaccine antigens, KMP-
11 has attracted much attention due to its high human 
T cell antigen (29-31). 

Another antigen is LACK (Leishmania homologue of 
receptors for Activated C Kinase), which plays a 
prominent role in the immunopathogenesis of 
Leishmania major by generating a Th2 response. T 
cells produce IL-4 against LACK antigen, resulting in 
resistance to leishmaniasis infection. The use of this 
protein as a DNA vaccine in mice was immunogenic 
and protective (32). 

Another selective antigen is a cysteine protease 
involved in developing parasitic diseases and survival, 
host cell infection, and escaping from the host 
immune system; therefore, it has been suggested as a 
target therapy molecule. Cysteine proteases are 
considered pathogens of Leishmania parasites. 
Protein derived from cysteine protease B is involved in 
modulating immune system activities such as inducing 
IL-4 production, inhibiting the production of IL-12 by 
macrophages, and analyzing MHC-II molecules (33, 
34). 

Multiepitope peptide vaccines (Novel vaccines) 
designed by bioinformatics tools not only cope with a 
variety of pathogens effectively but also reduce the 
negative effects of irrelevant immune sequences (35). 
Despite all the benefits of using a multiepitope 
peptide vaccine, the prime issue with these vaccines is 
a low immune promotion (36). To solve the problem, 
adjuvants are recommended (37). 

Toll-like receptors (TLRs) are protected receptors 
that are expressed in immune and non-immune cells 
and are known as a class of pattern recognition 
receptors (PRRs); those specific molecules recognize 
pathogens as agonists. Two TLR4 agonists, RpfE and 
RpfB, have been used as adjuvants to enhance vaccine 
safety. Various studies have used them as effective 
adjuvants in vaccines (38, 39). 

Novel vaccines (Multiepitope peptide vaccines) 
include protected B and T cell epitopes, which can be 
a useful approach for the advancement of vaccines for 
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infectious diseases. Studies have been performed to 
design multiepitope peptide vaccines for disease 
agents that have shown their ability to provide 
immunity against these agents (40-42). 

We attempted to identify and anticipate the best 
and most successful functional B and T cell epitopes 
for immunization in this work using bioinformatics 
technologies. The resuscitation-promoting factor RpfE 
and RpfB of Mycobacterium TB are two TLR4 agonists 
that were used as adjuvants in this study. In addition, 
we focused on producing a recombinant multiepitope 
vaccine that contained effective antigenic epitopes. 

The data illustrated the structure of the recombinant 
multiepitope vaccine was not allergic and could evoke 
humoral and cellular immune responses. The vaccine 
structure based on the bioinformatics system, which is 
reported here, provides significant immunogenic 
potential that may be further evaluated in the next 
phase of in vivo and in vitro study. 

 

2.Materials and Methods 
2.1. Protein Sequence Retrieval 

Protein sequences of candidate antigens related to 
LACK (Accession no. AAB88300.1), CPB (Accession no. 
AUL80104.1), and KMP-11 (Accession no. 
AAR84616.1) were attained from the National Centre 
for Biotechnology Information  
(https://www.ncbi.nlm.nih.gov/) (43).  

Mycobacterium TB RpfE and RpfB were obtained 
from UniProt at www.uniprot.org and used as TLR4 
agonists. RpfE (Entry: 053177) and RpfB (Entry: 
053177) (Entry: P9WG29, G5 domain). 

2.2. Evaluation of Antigen-determining Characteristics 

ProtParam server was used for physicochemical 
characterization of 3 selected antigens like molecular 
weight, amino acid composition, half-life, aliphatic 
index, theoretical pI, GRAVY, and so on  
(https://web.expasy.org/protparam/) (44).  

Furthermore, the antigenicity of every protein was 
shown using the ANTIGENpro server. This server 
(http://scratch.proteomics.ics.uci.edu/) is a pathogen 
-independent predictor with an accuracy of 82 
percent. (45). 

The SOPMA (Self-Optimized Prediction Method with 
Alignment) secondary structure analysis tool was used 
to predict four states: helix, beta-sheet, coil, and turn 
(https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html) 
(46). 

2.3. Anticipation of MHC-II Epitopes 

MHC-II binding epitopes were selected through 
RANKPEP server. Human MHC-II alleles, which are 

HLA-DRB 1101, HLA-DRB 0401, and HLA-DRB 1 101 
were selected to predict the MHC-II binding epitope. 

RANKPEP server predicts MHCII epitopes based on 
position-specific scoring matrices (PSSMs). The binding 
threshold for the highest epitope scores is 4-6% MHC-II 
(http://imed.med.ucm.es/Tools/rankpep.html) (47). 

2.4. Prediction of MHC-I Epitopes 

The MHC-I epitope analysis was assessed using the 
IEDB server. HLA-A * 01: 01 and HLA-B * 07: 02 were 
among the alleles used to predict MHC-I binding. 
Artificial Neural Networks (ANN), Stabilized Matrix 
Approaches (SMM), and Score Matrices derived from 
Combinatorial Peptide Libraries may all be employed 
as estimation methods. The consensus technique 
(https://www.iedb.org/) is employed, a mix of 
multiple approaches like ANN, SMM, and other 
combine the algorithms (48, 49). 

2.5. Prediction of B-Cell Epitopes 

The BCpred server was applied for linear 
anticipation of B cell epitopes. The BCpred server uses 
a Subsequence String Kernel (SSK) and Support Vector 
Machine (SVM) with 74.54% and 75% accuracy and 
specificity, respectively  
(https://webs.iiitd.edu.in/raghava/bcepred/) (50). 

2.6. Prediction of CTL Epitopes 

The CTLPred service was used to anticipate cytotoxic 
T lymphocyte (CTL) epitopes. This server employs a 
direct approach incorporating quantitative matrix (QM) 
and machine learning approaches. In addition, the 
server employs a mix of methodologies and consensus 
estimation. The consensus method technique was used 
to anticipate the default cut-off score (0.00)  
(http://www.webs.iiitd.edu.in/raghava/ctlpred/index.html). 
(51). 

2.7. Anticipation of Interferon-Gamma Induction 
Epitopes 

Interferon gamma-induced epitopes of MHC-II 
binding epitopes are predicted to design a useful 
multiepitope recombinant vaccine. The IFNepitope 
server uses a database made of IFN-gamma-induced 
and non-induced MHCII. IFNepitope server also uses 
various methods, including machine-learning, motif-
based search, and a hybrid approach. The maximum 
accuracy attained from the hybrid model is 81.39% 
(https://webs.iiitd.edu.in/raghava/ifnepitope/index.p
hp) (52). 

2.8. Design of a Recombinant Vaccine 

To create a recombinant multiepitope vaccine, the 
results obtained from the predicted epitopes were 
compared, and the epitopes with the highest and 
common scores were selected. Selected epitopes can 
evoke different sorts of immune responses. Selected 

https://www.ncbi.nlm.nih.gov/
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epitopes were combined with adjuvants by a suitable 
linker. 

2.9. Evaluation of the Characteristics of the 
Recombinant Multi-epitope Vaccine 

The antigenic and antigenic responses of the 
recombinant vaccine construct were assessed using 
the Vaxijen v2.0 server. Vaxijen v2.0 server predicts 
antigenicity antigenic response based on target 
organism antigens such as bacterial, viral, and tumoral 
antigens. 

This server employs a cutting-edge, alignment-
independent method for predicting antigenic reaction 
probability. Its target organism accuracy ranges from 
70% to 85%  
(http://www.ddgpharmfac.net/vaxijen/VaxiJen/VaxiJ
en.html) (53). 

The AllerTop v.2.0 server was used to estimate the 
allergenicity of the recombinant vaccination. With an 
accuracy of 85.3 percent, this site predicts allergies 
and non-allergies using the K-Nearest Neighbors 
(KNN) algorithm   
(http://www.ddg-pharmfac.net/AllerTOP) (54). 

The physicochemical characteristics of the 
recombinant multiepitope vaccination were assessed 
using a ProtParam server. In vitro and in vivo half-life, 
theoretical pI, molecular weight (MW), amino acid 
composition, instability index, in vitro and in vivo half-
life, aliphatic index, and Grand average of 
hydropathicity index (GRAVY), and molecular weight 
(MW) were among the physicochemical parameters 
calculated (https://web.expasy.org/protparam/) (44).  

2.10. Secondary Structure Evaluation 

The server GOR IV, secondary structure (alpha-helix, 
beta-sheet, turn, or random coil) was analyzed 
(https://npsaprabi.ibcp.fr/cgi-bin/secpred_gor4.pl) (53). 

2.11. Homogeneity Modeling 

The third structure of the recombinant multiepitope 
vaccine was predicted by utilizing the I-TASSER server. 
The predicted three-dimensional models are known as 
confidence scores, known as C scores (higher values 
indicate higher confidence)  
(http://zhanglab.ccmb.med.umich.edu/I-TASSER/ 
download/) (54). 

2.12. Refinement of 3D Model Structure 

GalaxyRefine performed the refining process of the 
3D model. According to C score, the best 3D model from 
I-TASSER has been processed in GalaxyRefine server. 
GalaxyRefine is likely to improve the early models 
(http://galaxy.seoklab.org/cgi-
bin/submit.cgi?type=REFINE) (55). 

 

2.13. Validation of the Refined Third Structure 

The 3D manufacture of the ultimate vaccine has 
been verified using ProSAweb, Verify3D, Rampage, 
and ERRAT servers. 

Using RAMPAGE's phi-psi torsion angles, RAMPAGE 
divides the protein into three groups: preferred outlier 
areas, permitted regions, and outlier regions. 
(http://mordred.bioc.cam.ac.uk/~rapper/rampage.php) 
(56). 

ProSAweb calculates the total quality score for a 
particular input structure. The server simply needs Cα 
atoms to evaluate low-resolution structures. 
Highlighting errors in experimental and theoretical 
models of protein structures is a great issue in 
structural biology.  

ProSA-web is a web-based interface to the ProSA 
software, which is often used to validate protein 
structures. For a given input structure, ProSA 
produces an overall quality score. If this rating falls 
outside of a typical range for natural proteins, the 
design is likely to have mistaken.  
(https://prosa.services.came.sbg.ac.at/prosa.php) 
(57). 

Non-bonded atomic interactions allow the ERRAT 
server to discriminate between proper and erroneous 
protein structure regions.   
(http://servi ces.mbi.ucla.edu) (58). 

A three-dimensional protein model was tested for 
compliance with the vaccine's sequence using 
Verify3D to validate its three-dimensional structure. 
(http://services.mbi.ucla.edu/) (59).  

2.14. In silico Cloning  

The Sequence Manipulation Suite server 
(https://www.bioinformatics.org/sms/) was used to 
conduct reverse translation and codon optimization of 
vaccine protein sequences. 

Another method used to investigate sequence 
properties was the GenScript Rare Codon Analysis 
Tool, which can be found at  
https://www.genscript.com/tools/rare-codon-analysis  
(https://www.genscript.com/tools/rare-codon-
analysis) (CFD). 

Eventually, restriction sites HindIII and BamHI were 
introduced to the N and C terminal sequences of the 
ultimate vaccine's DNA to clone it into the E. coli 
vector pET-14b. 
 

3. Results 
3.1. Retrieve and Collect Sequences 

In the present study, LACK, CPB, and KMP-11 
proteins were selected as antigenic determinants. 

http://www.ddgpharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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Sequences for three antigenic peptides were retrieved 
in the FASTA format at the NCBI site. The amino acid 
sequences for RpfE and RpfB were obtained in FASTA 
format from the UniProt dataset. RpfB is the most 
important part of linker to TLR4 (60).  

3.2. Analysis of Antigen-determining Structures 

The physicochemical properties, secondary 
structure analysis, and antigenicity prediction of all 
three proteins were determined and summarized in 
Table 1. 

 

Table 1. Analysis of selective antigens 

LACK KMP-11 CPB Features evaluation of antigen determinants 
312 92 349 Number of amino acids 

34.42 KD 11.23 KD 37.95 KD Molecular weight 
6.05 5.96 7.09 Theoretical pI 
36 20 31 Total number of negatively charged residues (Asp + Glu) 
30 17 31 Total number of positively charged residues (Arg + Lys) 

>10 hours >10 hours >10 hours Estimated half-life (Escherichia coli, invivo) 
31.38 50.02 35.65 Instability index 
80.61 33.04 77.48 Aliphatic index 
-0.275 -1.447 -0.095 Grand average of hydropathicity (GRAVY) 

13 is   4.17% 77 is  83.70% 117 is  33.52% Alpha helix 
136 is  43.59% 0 is   0.00% 63 is  18.05% Extended strand 
47 is  15.06% 2 is   2.17% 19 is   5.44% Beta turn 

116 is  37.18% 13 is  14.13% 150 is  42.98% Random coil 
0.751214 0.456471 0.775114 Predicted Probability of Antigenicity 

 

3.3. MHC Class II and I Epitopes 

RANKPEP server used LACK, CPB, and KMP-11 
proteins to anticipate MHC class II binding epitope 

(Tables 2). The MHC class I binding epitope 
anticipation was used by the server IEDB (Table 3).  

 

 

Table 2. Details of MHC-II epitopes 

Protein Name Start Position Allele Sequence Score 

CPB 

241 DRB 0101 YVSMESSER 20.861 
303 DRB 0401 YWVIKNSWG 19.943 
116 DRB 0101 YRKARADLS 18.08 
104 DRB 0101 YFAAAKQHA 17.994 
105 DRB 0401 FAAAKQHAG 17.737 
251 DRB 1101 MAAWLAKNG 14.691 
163 DRB 1101 WAVAGHKLV 10.425 

KMP-11 

70 DRB 1101 SEHFKQKFA 17.535 
77 DRB 0101 FAELLEQQK 12.767 
48 DRB 0401 YEKFERMIK 11.919 
5 DRB 0101 YEEFSAKLD 9.643 

LACK 

248 DRB 0101 FWMCVATER 23.317 
149 DRB 0401 HEDWVSSIC 20.452 
41 DRB 1101 WKANPDRHS 18.624 
26 DRB 0101 YIKVVLTSR 18.44 
85 DRB 1101 WDRSIRMWD 16.17 
10 DRB 0401 HRGWVTSLA 15.115 

 

 

 



Arian Karimi Rouzbahani et al, 435 

Year 16, Issue 5 (September-October 2022)                      Iranian Journal of Medical Microbiology 

Table 3. Details of MHC-I epitopes 

Protein Name Start Position Allele Sequence Score 

CPB 

339 HLA-A*01:01 HVSQSPTPY 0.41 
265 HLA-A*01:01 VDASSFMSY 0.35 
170 HLA-B*07:02 LVRLSEQQL 0.28 
90 HLA-A*01:01 SEAEFAARY 0.23 
73 HLA-B*07:02 QARNPHARF 0.23 

118 HLA-B*07:02 KARADLSAV 0.19 

KMP--11 

40 HLA-A*01:01 LSPEMKEHY 0.35 
69 HLA-A*01:01 HSEHFKQKF 0.24 
34 HLA-B*07:02 KPDESTLSP 0.12 
81 HLA-A*01:01 LEQQKAAQY 0.11 

LACK 

287 HLA-A*01:01 WSADGNTLY 0.96 
253 HLA-A*01:01 ATERSLSVY 0.95 
159 HLA-B*07:02 SPSLEHPIV 0.55 
188 HLA-A*01:01 RTLKGHSNY 0.35 
19 HLA-B*07:02 CPQQAGSYI 0.29 

164 HLA-B*07:02 HPIVVSGSW 0.29 
42 HLA-B*07:02 KANPDRHSV 0.28 

 

 

3.4. Prediction of Interferon-gamma Induced 
Epitopes and B Cell Epitopes 

The IFN epitope server was used to find the 
vaccine's IFN-gamma-inducing epitopes. 

IFN gamma-inducing epitopes were categorized into 
4 different epitopes. (Table 4). 

BCpred server selected B-cell epitopes of three 
selected proteins. The results are shown in Table 5. 

 

Table 4. IFN epitope server identified IFN-gamma-inducing epitopes in the ultimate vaccination design. 

Protein Start–end position IFN gamma score Sequence 

CPB 
104-124 1.6909292 YFAAAKQHAGQHYRKARADLS 
241-260 2 YVSMESSERVMAAWLAKNGP 

KMP-11 48-78 4.3950929 YEKFERMIKEHTEKFNKKMHEHSEHFKQKF 
LACK 26-49 3.3236104 YIKVVLTSRDGTAISWKANPDRHS 

 

 

Table 5. Details of B-cell epitopes 

Protein Name Start Position Sequence Score 

CPB 

209 FTEKSYPYVSGNGDVPECSN 0.988 
300 EVPYWVIKNSWGKDWGEKGY 0.985 
329 CLLTGYPVSVHVSQSPTPYL 0.978 
126 VPDAVDWREKGAVTPVKNQG 0.977 

KMP-11 31 FADKPDESTLSPEMKEHYEK 0.977 

LACK 
169 SGSWDNTIKVWNVNGGKCER 0.973 
38 AISWKANPDRHSVDSDYGLP 0.931 

191 KGHSNYVSTVTVSPDGSLCA 0.898 
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3.5. Prediction of CTL Epitopes 

The CTLpred server detected high-ranking CTL 
epitopes.  

When the MHC-I binding data were examined, 
researchers analyzed the parts that overlapped with 
the CTLPred results. Furthermore, CTL epitopes 
derived from frequent sites were used. (Table 6). 

 

Table 6. Predicted CPB, KMP-11, and LACK protein CTL epitope. 

Protein Name Start Position Sequence Score 

CPB 
63 ERNLELMRE 1.000 
83 ITKFFDLSE 1.000 

115 HYRKARADL 1.000 
KMP-11 60 EKFNKKMHE 0.990 

LACK 
25 SYIKVVLTS 1.000 

104 LKHTKDVLA 0.990 
 

3.6. Selection of Final Epitopes and Development 
of a Vaccine with Many Epitopes 

According to high-grade and common MHC-I, MHC-
II, CTL, B cell, INF-gamma epitopes, 8 sections of 3 
antigenic proteins were selected as the final region 

(Table 7). The GSGSGS linker fused selected epitopes 
of each protein. RpfE and RpfB were also combined 
with both ends of the vaccine as adjuvants. The final 
structure of the vaccine consists of 518 amino acid 
residues, shown in Figure 1.  

 

Table 7. The eight final epitope segments were selected based on the findings of the various servers from three antigens 

Protein Name Start–end position Sequence 

CPB 

63-92 ERNLELMREHQARNPHARFGITKFFDLSEA 

104-124 YFAAAKQHAGQHYRKARADLS 

219-260 GNGDVPECSNSSELAPGARIDGYVSMESSERVMAAWLAKNGP 

300-345 EVPYWVIKNSWGKDWGEKGYVRVTMGVNACLLTGYPVSVHVSQSPT 

KMP-11 48-78 YEKFERMIKEHTEKFNKKMHEHSEHFKQKFA 

LACK 

26-49 YIKVVLTSRDGTAISWKANPDRHS 

149-187 HEDWVSSICFSPSLEHPIVVSGSWDNTIKVWNVNGGKCE 

248-262 FWMCVATERSLSVYD 
 

 

Figure 1. A representation of vaccine sequence arrangement. 
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3.7. Allergenicity and Antigenicity Evaluation 

The result retrieved by the AllerTOP 2.0 server 
showed that the designed structure is non-allergenic.  

As a result, the multiepitope vaccine has been 
created such that this will not generate allergy-specific 
IgE and inflammation. 

The vaccine has a total antigenocytic probability of 
0.8659 percent by Vaxijen at a minimum of 0.4 
percent, indicating that it may induce effective T and 
B cell immune function. 

3.8. Measurement of Physicochemical Parameters 

According to our calculations, the protein's 
theoretical pI is 5.87, and its molecular weight is 55.05 
kDa. The pI value is a measure of the protein's ph. 
Remainders with a total of 61 negative and 52 positive 
charges were found in this study. The anticipated half-
lives of mammalian erythrocytes (in vitro), yeast (in 

vivo), and bacteria (in vitro) were 100, 20, and 10 
hours, respectively (E. coli, in vivo). It was determined 
that the instability index (II) was 37.70. Stable protein 
is what we call this one. 61.58 was the aliphatic index 
value. The protein has a high aliphatic index, implying 
it can withstand a broad temperature. Aside from 
that, the vaccine construct's GRAVY value was -0.506. 
Negative GRAVY implies that the protein is hydrophilic 
and more capable of interacting with water molecules 
in the environment. 

3.9. Secondary Structure Evaluation 

Secondary structure prediction by GOR IV showed 
that the multi-epitope vaccine includes 24.13% α-helix 
(H), 20.66% extended strand (E), 0.00% beta-turn (T) 
and 55.21% random coil (C) (figure 2). The proportion 
of secondary structures in the multiepitope structure 
suggests that the designed vaccine is likely to be able 
to form antigenic epitopes. 

 

 

  
Figure 2. The predicted secondary structure of the multiepitope vaccines using GOR IV software. H: Alpha helix (blue), E: Extended 
strand (red), T: Beta-turn (green) and C: Random coil (yellow) 

 

3.10. Homogeneity Modeling 

The I-TASSER server was used to create the final 
vaccine's 3D model, and the best five approaches rely 
upon C score were presented. The C score ranges from 

[-5 to 2], and the greater the C score, the more serious 
the problem, the more confident the model is. Model 
3 had the best C-score (-1.76) and was chosen for 
more study. (Figure 3a). 
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3.11. Refinement of the Structure of the Third 
Model 

Selected models were refined by applying 
GalaxyRefine. Five improved 3D models were released 

to the GalaxyRefine service. Furthermore, the best 
model was obtained based on the Z score and the 
overall quality coefficient of a high-quality three-
dimensional model (Figure 3b). 

 

 
Figure 3. The refined 3D model of the multiepitope peptide vaccine. A) The 3D structure of the designed vaccine was determined 
by homology modeling using I-TASSER server, and B) was refined by GalaxyRefine and 3Drefine servers. 

 

3.12. Validation of the Refined Third Structure 

Many virtual validating techniques were utilized to 
check the validity of the revised model. These 
approaches included: Ramachandran design; ERRAT; 
ProSA; and verify-3D. 

For example, 337 (79.858 %), 56 (13.270 percent), 
and 29 (6.872 %) of the original model residues were 

found in the preferred, permitted, and outlier areas, 
respectively (Figure 4a). 

393 (93.128 %), 18 (4.265 %), and 11 (2.607 percent) 
were the new ratios after the refining run (Figure 4b). 

It seems from the findings that most of the amino 
acids have been moved inside the permitted range 
throughout the refining run, according to the data.  

 

 
Figure 4. The validation of 3D protein model, using Ramachandran plot. a) The initial model b) The refined model 
 

ProSA-web server assessments were also included 
in our research to further confirm the quality of the 3D 
model before and after refining. The original model's 
ProSA Z-score was -1.73, while the improved model's 
Z-score was -3.36 (Figure 5a and 5b, respectively). 

Structures of comparable size to natural proteins have 
been included in this model, as seen in Figure 5. It was 
also shown that most residues had negative energy 
values when plotted on a graph based on energy. 
(Figure 6). 
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Figure 5. The z-Score graphs for the construct's 3D structure. 
 

The first model's z-score is -1.73, which is beyond 
the range of natural protein structure, and b 

After refining, a model's z-score is – 3.63, which is 
within the range of natural protein structure. 

The z-Score graphic shows the z-scores of all 
experimentally determined polypeptide chains in PDB 

(dark blue) and X-ray crystallography (light blue) (light 
blue). 

Results with a z-score of 10 are shown in the graph. 

The protein's z score is shown by a huge black dot.  

 

 
Figure 6. ProSA server energy charts of the original model (a) and revised model (b). For the improved model, the majority of the 
residues have negative numbers, as illustrated.  
 

In addition, the quality of the modeled structure was 
verified using ERRAT. The results showed that the 
overall quality coefficient of the initial three-

dimensional model was 58.5106 (Figure 7a). After 
refining processes, the ERRAT coefficient of the 
refined 3D model reached 73.4818 (Figure 7b). 

 

 
Figure 7. The overall quality factor plot (ERRAT) of a the initial model is 58.5106, and b the final model after adjustment is 73.4818; 
areas of the 3D model that could be refused at the 99 percent confidence level are shown with grey lines, and zones that can be 
rejected at the 95 percent confidence level have been shown with black lines in the ERRAT graph. The total qualityof f value for 
excellent high-resolution structures is about 95% or above.  
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Furthermore, the Verify 3D score revealed that 
53.86 percent of the residues in the original model had 
a mean score of 3D-1D score 0.2. (Figure 8a). The 

Verify 3D score was 58.69 percent after the refining 
procedure, showing that further residues were put in 
appropriate side chain settings. (Figure 8b). 

 

 
Figure 8. The Verify-3D program evaluates the quality of 3D buildings. In the original model (a) and refined model 
(b), 53.86 percent and 58.69 percent of the residues, respectively, have a score of > 0.2.  

 

3.13. In silico Cloning  

The vaccine construct was developed by the 
Sequence Manipulation Suite server was backward 
translated and codon-optimized. The GenScript 
program was used to assess crucial gene sequence 
properties such as codon compatibility index (CAI), GC 
content, and codon frequency distribution in order to 
enable high-level protein production in E. coli hosts 
(CFD). CAI was the optimized nucleotide sequence 1, 
CAI> 0.80 is considered suitable for expression. The 
mean GC content of the designed vaccine sequence 
was 59.37%; the percentage of GC content in the 
range of 30-70% is desirable. The frequency 
distribution of the codon was 100 (CFD), while codons 
with values <30 appeared to be inhibited. Overall, 
these findings indicated that the optimized DNA 
sequence is clonable and expression-ready. 

 

4. Discussion  
Leishmaniasis is a widespread parasitic disease that 

is prevalent in most regions of the globe. It may take 
many different forms, given the variety of pathogenic 
organisms. (61).  

Leishmania major is one of the causes of occurring 
cutaneous leishmaniasis, which is more common in 
rural areas with poor health conditions and low 
economic status. Leishmania major can cause skin 
lesions. These lesions can spread and become painful. 
Tragically, even after healing, the lesion stays 
distorted, and the skin is injured in most instances. 
(62).  

Various factors, including the unavailability of the 
vaccine, proper control of the vector, the cost of 
available drugs, the duration of treatment, and 
resistance to the parasite, all play a role in the inability 

to eradicate the disease completely. Therefore, the 
best strategy is to produce an effective vaccine that 
can stimulate and activate the body's immune system 
against the parasite (63, 64).  

Basic studies are needed to identify a safe and 
effective vaccine that can stimulate the immune 
response (65). Antigens such as CP and KMP-11 have 
been investigated as targets in vaccine design for 
combat Leishmania (66, 67). In addition, recombinant 
vaccines such as Leish111f and Leishmune have been 
developed as leishmaniasis vaccination alternatives 
(68). Yet, no ideal vaccination against the illness has 
been authorized for human treatment (13, 69). 

Bioinformatics approaches are now effective for 
designing novel vaccines (70). Several important 
studies have demonstrated the benefits of vaccines 
that have been designed using bioinformatics 
methods and are currently used as an effective 
vaccine (e.g., studies on malaria, influenza, cancer, 
dengue, and multiple sclerosis) (19, 71-73). 

Several bioinformatics and immunoinformatics 
techniques have been effectively applied in numerous 
biological disciplines. These tools reduce the time and 
cost required to identify the dominant immune 
epitopes of B and T cells while increasing the level of 
screening accuracy (74). 

Research shows that Leishmania major infection in 
a resistant mouse model; it activates Th1 type CD4 
cells. Th1 cells produce interferon-gamma, which 
promotes improvement and immunity against 
infection. The Th2 response is induced in BALB/c 
sensitive mice, and IL-4 is generated; however, IFN- 
production is decreased, and infected animals are 
susceptible to the illness. However, in the mouse 
model, the production of the Th1 response type is 
linked to therapy and protection, while the generation 
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of the Th2 response type is linked to disease 
progression and mortality, but human leishmaniasis 
susceptibility and resistance are yet unknown (20, 75-
78).  

Overall, the recovery form of CL is associated with 
cells that generate IFN-, while the non-recovery form 
of CL is associated with a combination of Th1 and Th2 
cytokines, with IL-4 and IL-10 being abundant (79-81). 
As a result, vaccinations targeting T and B cell epitopes 
seem to be more effective. As a result, T and B cell 
epitopes were investigated in this research. 

Employing bioinformatics techniques, the antigens 
LACK, CPB, and KMP-11 were utilized to construct a 
multiepitope vaccination for L. major. In order to 
enhance the likelihood of discovering the greatest 
immunodominant epitopes, numerous servers were 
used to choose LACK, CPB, and KMP-11 antigens. 
MHC-I, MHC-II, CTL, B cell, and INF-gamma binding 
epitopes were compared, and epitopes with high 
scores and overlaps were chosen. In addition to 
predicting T and B cell epitopes, the presence of IFN-
γ-induced epitopes in the structure of the ultimate 
vaccine was evaluated. Four epitopes were identified 
as IFN-γ-induced epitopes. Several cytokines, notably 
IFN-, have been demonstrated to be significant in 
parasite elimination (82). Hence, epitopes capable of 
producing IFN-γ are important for CL vaccine design. 

Adjuvants are added to the structure of 
multiepitope peptide vaccines to overcome the poor 
immunogenicity of the vaccine. Adjuvants play a 
crucial role in boosting the immune system (41, 83). 
Pathogen-associated molecular patterns (PAMPs) 
attach to Toll-like receptors (TLRs), which trigger 
innate immune responses. Two TLR 4 agonists, RpfB 
and RpfE, were utilized as adjuvants in this 
investigation. RpfB enhances Th1-type T cell 
immunological responses by directly binding to TLR4 
and activating TLR4-dependent dendritic cells. RpfE 
interacts with DC to differentiate crude CD4 cells into 
Th1 and Th17 immune responses (62). As a result, 
using adjuvants to develop effective multiepitope 
vaccinations to prevent CL is a good idea. 

Linkers are essential components of recombinant 
multiepitope vaccines and take part in functional 
structural vaccine development (79, 84). In this study, 
two types of linkers, namely EAAAK and GSGSGS, were 
used to join different parts of the multiepitope 
vaccine. The GSGSGS flexible linker was used to match 
functional domains that require domain interactions. 
EAAAK rigid linker creates space between domains 
(80, 81). In addition, these linkers provide stability and 
bioactivity to the peptide structure (83, 85). 
Accordingly, EAAAK was used to link RpfB and RpfE to 
the designed vaccine structure. 

Bioinformatics tools evaluated the vaccine's 
physicochemical, immunological, and structural 
characteristics. According to the results of structural, 
immunological, and physicochemical properties, the 
vaccine designed in this study can be proposed as a 
suitable option for a vaccine.  

Numerous factors, including CAI, CFD, and GC 
content, must be tuned to achieve high-level protein 
expression in E. coli. The findings of the optimized 
gene demonstrated that the intended vaccine could 
be efficiently produced in the E. coli host following 
analyzing all of the aforementioned parameters 
employing GenScript. 

 

5. Conclusion 
Using an immunoinformatics approach, we aimed to 

construct a multiepitope-based vaccination against CL 
in this work. Our created vaccine may be a decent 
choice for vaccination against Leishmania major based 
on computational findings, immunological and 
structural analyses, and physicochemical 
assessments. The recombinant structure can activate 
both humoral and cellular immune responses. The 
suggested vaccine, which uses a variety of epitopes 
and adjuvants and has acceptable physicochemical 
properties, is likely to elicit strong immune responses 
against CL. However, in vitro and in vivo testing are 
required to assess the effectiveness of multiple 
epitope vaccines. 
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