year 13, Issue 1 (March - April 2019)                   Iran J Med Microbiol 2019, 13(1): 32-43 | Back to browse issues page


XML Persian Abstract Print


1- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
2- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran , mtaghizadeh@Alumni.ut.ac.ir
Abstract:   (8045 Views)
Background and Aims: The rate of variation in various genes of a bacterial species is different during evolution. Therefore, in systematic bacterial studies many researchers compare the phylogenetic tree of a particular gene to the standard tree of an rRNA gene. Regarding the importance of 16SrRNA gene and the evolutional process of RecA protein family, we investigated the changes in the selected phylum of bacterial RecA family in comparing with the 16SrRNA gene.
Materials and Methods: For this purpose, sequences of the RecA protein family were extracted from Uniprot database and categorized by using CD-hit algorithm. One species was selected from each category. Then we found 16SrRNA complete sequences for same species. After determining the index, based on the Average Alignment Score (AAS), the 16s-taxonomic tree was obtained. Furthermore, Similar calculations were considered for corresponding RecA proteins phylums.
Results: By comparing amount of AAS in 16srRNA phylums and RecA phylums, we observed that the Actinobacteria phylum is the closest to the header phylum in the 16s-taxonomic tree, but the same phylum in the RecA is the most distant to the header phylum; and the position of the cyanobacteria phylum remains the same in both trees, which indicates the least amount of changes in the genus and species of this phylum.
Conclusion: The 16s-taxonomic tree which is presented in this study for the first time is different from the available bioinformatics algorithms for tree drawing. Finding the species with the highest and lowest rates of changes, can be a type of prediction method for indicating the reasons why bacteria become resistant to drugs over a long period of time.
Full-Text [PDF 1791 kb]   (2549 Downloads)    
Type of Study: Original Research Article | Subject: Microbial Bioinformatics
Received: 2018/11/5 | Accepted: 2019/05/15 | ePublished: 2019/07/22

References
1. Taghizadeh M, Khoei S, Nikoofar AR, Ghamsari L, Goliaei B. The role of Rad51 protein in radioresistance of spheroid model of DU145 prostate carcinoma cell line. International Journal of Radiation Research. 2009 Jul 1;7(1):19
2. Chintapalli SV, Bhardwaj G, Babu J, Hadjiyianni L, Hong Y, Todd GK, Boosalis CA, Zhang Z, Zhou X, Ma H, Anishkin A. Reevaluation of the evolutionary events within recA/RAD51 phylogeny. BMC genomics. 2013 Dec;14(1):240. [DOI:10.1186/1471-2164-14-240] [PMID] [PMCID]
3. Wang, Ting‐Fang, Li‐Tzu Chen, and Andrew H‐J. Wang. "Right or left turn? RecA family protein filaments promote homologous recombination through clockwise axial rotation." Bioessays 30.1 (2008): 48-56. [DOI:10.1002/bies.20694] [PMID]
4. Shinohara A, Ogawa H, Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992 May 1;69(3):457-70. [DOI:10.1016/0092-8674(92)90447-K]
5. Bishop DK, Park D, Xu L, Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell. 1992 May 1;69(3):439-56. [DOI:10.1016/0092-8674(92)90446-J]
6. Brendel, Volker, et al. "Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms." Journal of molecular evolution 44.5 (1997): 528-541. [DOI:10.1007/PL00006177] [PMID]
7. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y. A new view of the tree of life. Nature microbiology. 2016 May;1(5):16048. [DOI:10.1038/nmicrobiol.2016.48] [PMID]
8. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J. Re-evaluating prokaryotic species. Nature Reviews Microbiology. 2005 Sep;3(9):733. [DOI:10.1038/nrmicro1236] [PMID]
9. Godfray HC. Challenges for taxonomy. Nature. 2002 May 2;417(6884):17. [DOI:10.1038/417017a] [PMID]
10. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research. 2012 Nov 27;41(D1):D590-6. [DOI:10.1093/nar/gks1219] [PMID] [PMCID]
11. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R. Uniting the classification of cultured and uncultured bacteria and archaea using t rRNA gene sequences. Nature Reviews Microbiology. 2014 Sep;12(9):635. [DOI:10.1038/nrmicro3330] [PMID]
12. Beye M, Fahsi N, Raoult D, Fournier PE. Careful use of 16S rRNA gene sequence similarity values for the identification of Mycobacterium species. New microbes and new infections. 2018 Mar 1;22:24-9. [DOI:10.1016/j.nmni.2017.12.009] [PMID] [PMCID]
13. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics. 2004 Dec;5(1):113.
14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution. 2011 Oct 1;28(10):2731-9. [DOI:10.1093/molbev/msr121] [PMID] [PMCID]
15. Eisen JA. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. Journal of molecular evolution. 1995 Dec 1;41(6):1105-23. [DOI:10.1007/BF00173192] [PMID] [PMCID]
16. 16)Hofmann K, Bucher P, Falquet L, Bairoch A. The PROSITE database, its status in 1999. Nucleic Acids Research. 1999 Jan 1;27(1):215-9. [DOI:10.1093/nar/27.1.215] [PMID] [PMCID]
17. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006 May 26;22(13):1658-9. [DOI:10.1093/bioinformatics/btl158] [PMID]
18. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012 Oct 11;28(23):3150-2. [DOI:10.1093/bioinformatics/bts565] [PMID] [PMCID]
19. Federhen S. The NCBI taxonomy database. Nucleic acids research. 2011 Dec 1;40(D1):D136-43 [DOI:10.1093/nar/gkr1178] [PMID] [PMCID]
20. Coenye T, Vandamme P. Use of the genomic signature in bacterial classification and identification. Systematic and applied microbiology. 2004 Jan 1;27(2):175-85. [DOI:10.1078/072320204322881790] [PMID]
21. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology. 1994 Oct 1;44(4):846-9. [DOI:10.1099/00207713-44-4-846]
22. Woo PC, Tsoi HW, Leung KW, Lum PN, Leung AS, Ma CH, Kam KM, Yuen KY. Identification of Mycobacterium neoaurumIsolated from a Neutropenic Patient with Catheter-Related Bacteremia by 16S rRNA Sequencing. Journal of clinical microbiology. 2000 Sep 1;38(9):3515-7.
23. Berson AE, Peters MR, Waleh NS. Nucleotide sequence of recA gene of Aquaspirillum magnetotacticum. Nucleic acids research. 1990 Feb 11;18(3):675. [DOI:10.1093/nar/18.3.675] [PMID] [PMCID]
24. Chintapalli SV, Bhardwaj G, Babu J, Hadjiyianni L, Hong Y, Todd GK, Boosalis CA, Zhang Z, Zhou X, Ma H, Anishkin A. Reevaluation of the evolutionary events within recA/RAD51 phylogeny. BMC genomics. 2013 Dec;14(1):240 [DOI:10.1186/1471-2164-14-240] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.