:: سال 12، شماره 1 - ( فروردین - اردیبهشت 1397 ) ::
جلد 12 شماره 1 صفحات 23-32 برگشت به فهرست نسخه ها
بررسی سمیت سلولی نانوذرات طلای سنتز شده به روش بیولوژیک به وسیلۀ قارچ Fusarium Oxysporum بر رده‌های سلولی طبیعی و سرطانی فیبروبلاست
طاهره نورانی1، دکتر سیدحسین بدیعی 2، دکتر صاحبعلی منافی1، دکتر بهروز یحیایی3
1- گروه مهندسی مواد سرامیک، دانشکدۀ فنی و مهندسی، دانشگاه آزاد اسلامی، واحد شاهرود، شاهرود، ایران
2- گروه مهندسی مواد سرامیک، دانشکدۀ فنی و مهندسی، دانشگاه آزاد اسلامی، واحد شاهرود، شاهرود، ایران ، drh_badiee@yahoo.com
3- گروه علوم پایه، دانشکده پزشکی، دانشگاه آزاد اسلامی، واحد شاهرود، شاهرود، ایران
چکیده:   (431 مشاهده)

زمینه و هدف: با وجود اینکه روش‌های مختلفی برای تولید نانوذرات وجود دارد، روش تولید بیولوژیکی نانوذرات به دلیل خواص دوستدار طبیعت آن و صرفه‌جویی در انرژی، توجه محققان را به خود جلب کرده است. در مطالعۀ حاضر تولید بیولوژیکی نانوذرات طلا به وسیلۀ سویۀ قارچ Fusarium oxysporum انجام و سمیت نانوذرات بهدست آمده در کشت سلولی بررسی شد.
 مواد و روش‌کار:  Fusarium oxysporum خریداری و در محیط کشت سابوراد دکستروز براث (SDB) کشت داده شد. سوپرناتانت کشت در معرض محلول کلرواوریک اسید در غلظت نهایی ۱ میلی مولار قرار گرفت. پس از تولید نانوذرات، محلول تغییر رنگ دادۀ نانوذرات برای بررسی با اسپکتروفوتومتر و TEM استفاده شد و نانوذرات بهدست آمده شستوشو و استریل شدند. در نهایت دو ردۀ کشت سلولی CIRC-HLF به عنوان ردۀ طبیعی و SW 872 به عنوان ردۀ سرطانی برای آزمونMTT  استفاده شدند.
یافته‌ها: رنگ سوپرناتانت قارچ پس از ۲۴ ساعت از زرد به قرمز تغییر پیدا کرد. عکس‌های TEM نشان داد که نانوذرات کروی و چند وجهی با ابعاد در حدود۵۰-۷۰ نانومتر هستند. آزمون MTT و آزمون کشت سلولی نشان داد که نانوذرات طلای تولیدی هنگامیکه در غلظت‌های بالا استفاده شود اثر سمی دارد و کشت سلولی ردۀ CIRC-HLF به غلظت‌های بالا از نانوذرات طلا نسبت به ردۀ سلولی SW 872 مقاوم‌تر بودند.
نتیجه‌گیری: ­ به نظر می‌رسد که تولید نانوذرات طلا بیولوژیک با Fusarium oxysporum انجام شدنی است و میتوان آن را به راحتی تولید، شست‌وشو و استریل کرد. این نانوذرات می‌توانند در شرایط درون بدن هم استفاده شوند.

واژه‌های کلیدی: نانوذرات طلا، Fusarium oxysporum، سمیت سلولی، ردۀ‌ سلولی انسانی CIRC-HLF، ردۀ سلولی انسانی SW 872
متن کامل [PDF 1197 kb]   (46 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: نانو بیوتکنولوژی در پزشکی
فهرست منابع
1. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6(2):257-62. [DOI]
2. Kathiresan K, Manivannan S, Nabeel M, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces. 2009;71(1):133-7. [DOI] [PubMed]
3. Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006;83(1-4):132-40. [DOI]
4. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10):105104. [DOI]
5. Lengke MF, Fleet ME, Southam G. Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium (II) chloride complex. Langmuir. 2007;23(17):8982-7. [DOI] [PubMed]
6. Moghaddam KM. An introduction to microbial metal nanoparticle preparation method. J Young Investig. 2010;19(19):1-7.
7. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters. 2001;1(10):515-9. [DOI]
8. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644-54. [DOI] [PubMed]
9. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325-7. [DOI] [PubMed]
10. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33(7):2327-33. [DOI] [PubMed]
11. Schaffie M, Hosseini M. Biological process for synthesis of semiconductor copper sulfide nanoparticle from mine wastewaters. J Environ Chem Eng. 2014;2(1):386-91. [DOI]
12. Weissman-Shomer P, Fry M. Chick embryo fibroblasts senescence in vitro: Pattern of cell division and life span as a function of cell density. Mech Ageing Dev. 1975;4:159-66. [DOI]
13. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Advances in colloid and interface science. 2010;156(1-2):1-13. [DOI] [PubMed]
14. Binupriya A, Sathishkumar M, Yun S-I. Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids and Surfaces B: Biointerfaces. 2010;79(2):531-4. [DOI] [PubMed]
15. Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M. Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir. 2004;20(16):6827-33. [DOI] [PubMed]
16. Xiong B, Cheng J, Qiao Y, Zhou R, He Y, Yeung ES. Separation of nanorods by density gradient centrifugation. J Chromatogr A. 2011;1218(25):3823-9. [DOI] [PubMed]
17. Sambrook J, Fritsch E, Maniatis T. Molecular cloning : a laboratory manual. 2nd ed. New York: Cold spring harbor laboratory press; 1989:17-9.
18. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 2007;42(5):919-23. [DOI]
19. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater lett. 2008;62(29):4411-3. [DOI]
20. Birla S, Tiwari V, Gade A, Ingle A, Yadav A, Rai M. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48(2):173-9. [DOI] [PubMed]
21. Yazdansetad S, Taheri R, Ajoudanifar H. Production of microbial cellulose by native species of Pseudomonas luteola. NCMBJ. 2015;5(19):53-60
22. Nune SK, Chanda N, Shukla R, Katti K, Kulkarni RR, Thilakavathy S, et al. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem. 2009;19(19):2912-20. [DOI] [PubMed]
23. Muniyappan N, Nagarajan N. Green synthesis of gold nanoparticles using Curcuma pseudomontana essential oil, its biological activity and cytotoxicity against human ductal breast carcinoma cells T47D. J Environ Chem Eng. 2014;2(4):2037-44. [DOI]
24. Klekotko M, Matczyszyn K, Siednienko J, Olesiak-Banska J, Pawlik K, Samoc M. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles. Phys Chem Chem Phys. 2015;17(43):29014-9. [DOI]


XML   English Abstract   Print



سال 12، شماره 1 - ( فروردین - اردیبهشت 1397 ) برگشت به فهرست نسخه ها