Isolation and identification of a novel strain of Acetobacter ghanensis KBMNS-IAUF-6 from banana fruit, resistant to high temperature and ethanol concentration

Keivan Beheshti-Maal1*, Noushin Shafiee2
1. Associate Professor of Microbiology, Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
2. M.Sc. of Microbiology, Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

Article Information

Article Subject: Microbial Biotechnology

Abstract

Background and Aims: The use of ethanol-temperature-resistant Acetobacter strains to produce vinegar on an industrial scale is important due to their sensitivity to high ethanol concentration as substrate and high energy consumption for acetator cooling. The aims of this study were to isolate and identify high temperature and ethanol resistant Acetobacter strains as starter for production of vinegar.

Materials and Methods: The banana alcoholic extract was transferred to the fermenter medium and after 24 h incubation at 30°C, colonies with transparent zone were purified as acetic acid bacteria and examined macroscopically and microscopically. The resistance to high temperature in constant ethanol and time as well as resistance to high ethanol in constant temperature and time we investigated.

Results: The studies of AAB isolate grown in the Carr medium showed that it was an Acetobacter strain. According to the single-factor optimization, this species was able to grow in a Carr medium containing 9% ethanol at 40°C after 72 h.

Conclusion: This is the first report of an AAB isolation from banana in Iran. This bacterium, as a new resistant strain to high levels of ethanol and temperature, was identified as Acetobacter ghanensis KBMNS-IAUF-6 and its 16S-rDNA sequence was deposited in GenBank, NCBI, under the accession number of MK968570. This new strain can be suggested as a high temperature and ethanol resistant strain for producing banana vinegar on a semi-industrial and industrial scale.

Keywords: Acetic acid bacteria, Acetobacter ghanensis, Industrial and food biotechnology, Temperature and ethanol resistant strain

How to cite this article:

Copyright © 2019 Iranian Journal of Medical Microbiology. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

According to the US Food and Drug Administration, vinegar is a sour-tasting solution containing at least 4% acetic acid. Acetic acid in vinegar is produced by acetic acid bacteria. The quality of vinegar production depends on the type of acetic acid, the substrate and the method used in its production (1-3). Recently vinegar factories are searching for new varieties of vinegar using different types of acetic acid bacteria as starter. Because each microbial starter, in addition to acetic acid, produces 50 other types of aromatic substances. So, the vinegar produced by these strains will have a new flavor. Acetic acid bacteria are isolated from a variety of natural substrates such as fruits, potatoes and rice. Various kinds of vinegar known so far include wine vinegar, white vinegar, sherry vinegar, balsamic vinegar, beer vinegar, malt vinegar, barley vinegar, rice vinegar, onion vinegar and potato vinegar (4, 5). Acetic acid bacteria are obligatory Gram-negative and aerobic rods. There are currently 12 genera in this family, among which three genera are more important industrially including Acetobacter, Gluconobacter and Gluconacetobacter (6). Among the acetic acid bacteria, Acetobacter species are more suitable for the production of vinegar on an industrial scale because they directly use ethanol as a cheap substrate and also produce no other product than acetic acid. Acetobacter species are chemolithotrophic, motile or non-motile, catalase positive, oxidase negative, mesophilic and capable of super-oxidation. In Acetobacter species, ethanol is oxidized to acetic acid and then acetic acid to carbon dioxide in the process of oxidation and super-oxidation. The redox process occurs when the oxygen content is high but ethanol is not present in the medium. Therefore, the concentration of ethanol as a substrate is very important in the vinegar production process (7). The traditional method, as the first industrial process of vinegar production, was carried out in open barrels. Despite the high quality of the product, this method was slow. In the nineteenth century, surface fermentations emerged as faster methods. One of these methods was the drop generator, which is still used today. At the beginning of 1949, submerged fermentation methods were developed. Therefore, the goal of new technologies is to produce high quality, inexpensive vinegar in a short period of time. Thus, recent methods of vinegar production include the use of acetator submerged methods (4, 8, 9). Because of the high energy consumption for cooling the acetator, isolation of thermo-tolerant Acetobacter strains is necessary. These isolated strains must be highly resistant to ethanol because when the ethanol concentration is low the Acetobacter strains have to oxidize the acetate for survival, but super-oxidation does not occur in the presence of high ethanol levels. Due to the mesophilic nature and susceptibility of the bacteria to high ethanol concentrations, it is needed to optimize different varieties of Acetobacter spp. in vinegar production in order to increase their resistance to high temperature and ethanol (10). The purposes of this study were to isolate and identify new strains of high ethanol and temperature resistant Acetobacter strains from banana fruit to produce a new flavored vinegar.

Materials and Methods

The Chemicals and culture media

The materials used in this study included Gram staining kit (Taligene Pars Co., ISTT, Iran), hydrogen peroxide and oxidase disk (Merck, Germany). Also the culture media used in this study included Carr culture medium [yeast extract, 3%; agar, 2%; bromocresol green, 0.002% (Merck, Germany); sterile distilled water, 100 ml; ethanol, 2% (Merck, Germany)] and Frateur medium [yeast extract, 2%; calcium carbonate, 2%; agar, 2%; sterile distilled water, 100 ml; ethanol, 2% (v/v)].

Initial isolation of different strains of acetic acid bacteria

The ripe and sweet bananas were kept in a clean cabinet at room temperature until the fruit flies were seen and the smell of the scent arose. After peeling and squeezing the banana structure by sterile mortar, the extract obtained from the banana was transferred to a 2-liter sterile bottle. Also, a few holes were created to prevent the bottle from exploding due to the yeasts’ production of carbon dioxide. The bottle was kept in a clean cabinet at room temperature for 7 to 10 days (7). Then 50 µl of 10^1 to 10^5 dilutions of this extract were cultured in Frateur culture medium. After incubation at 30°C for 48 to 72 hours, the colonies that were surrounded by clear halo zone were purified in the same medium. Then, the macroscopic and microscopic characteristics of the isolates were studied after 24-hour culture in Frateur and Carr medium (11).

Screening of different Acetobacter spp.

For the screening of Acetobacter species from other acetic acid bacteria, in Carr and Frateur media, the yellowish colonies with oxidase-negative and catalase positive reactions were selected (11).
Molecular identification of *Acetobacter* isolated strains

Pure colonies were transferred to 50 ml sterile distilled water from the culture medium for 24 h. 10 ml of this suspension was transferred to a sterile 15 ml Falcon and centrifuged at 5000 g for 15 minutes. The supernatant was discarded and the pellet was transferred to a sterile tube. DNA extraction kit (Bioneer, South Korea) was used for DNA extraction from 1 mg of bacterial mass. In this study, general primers designed and constructed by Taligene Pars Company, Isfahan, Iran. The OF BUI and OR BUI, were as forward and reverse primers respectively. Their sequences were 5’-AACTGGAGGAAGGTGGGGAT-3’ as forward primer and 5’- AGGAGGTGATCCAAACCGCA -3’ as reverse primer.

The PCR program consisted of initial temperature of 96°C for 4 minutes followed by 30 cycles with temperatures of 94°C for 2 minutes, 55°C for 1 minute and 72°C for 1 minute, respectively. The final stages consisted of 72°C for 4 minutes and 4°C for 10 minutes, respectively. The expected molecular weight of the PCR product was 370 bp (12). The PCR product and primers were sent to Taligene Pars for sequencing. These sequences were analyzed using Finch TV V.1.4.0 and Mega 6 software and compared with the genomic sequences available in GenBank, NCBI using blast software (http://blast.ncbi.nlm.nih.gov). Finally, 16S-rDNA sequence of the isolate was deposited in the GenBank, NCBI.

Single-factor optimization of high ethanol resistance and temperature *Acetobacter* isolate

The experiment was performed to select high-alcohol and temperature-resistant *Acetobacter* strains. In this study, acid production and growth rate of the isolate in terms of colony forming unit (CFU) in Carr medium with different amounts of ethanol (2 to 10%) at constant temperatures of 34, 36, 38 and 40°C after 24, 48, 72 and 96 hours were performed. Also, the growth and acid production of this isolate at different temperatures of 34, 36, 38 and 40°C in the culture medium with constant ethanol content (5, 7 and 9%) after 24, 48, 72 and 96 hours were compared (6).

Results

Macroscopic, microscopic and biochemical properties of *Acetobacter* isolates

In this experiment, an acetic acid bacterium was isolated by creating a transparent area around colonies in the Frateur medium after 72 h (Fig. A1). Investigation of macroscopic characteristics of 24-hour culture of this bacterium in Carr and Frateur media showed that the colonies grown were round, fine, colorless, translucent, soft and had an odor of vinegar. Also microscopic characteristics of the isolates in these two media showed that these bacteria were rod-shaped and Gram-negative. According to the results of the screening, this catalase-positive and oxidase-negative isolate had oxidation (Figure B1) and super-oxidation (Figure C1) properties. Therefore, this isolate was identified as an *Acetobacter* species.

![Figure 1](image-url)

Figure 1. Calcium carbonate consumption in Frateur medium by strain isolated from bananas after 72 h (A), oxidation process by isolate after 24 h in Carr medium (B) and super-oxidation process by isolate after 72 h in Carr medium (C).
High temperature-ethanol resistant *Acetobacter ghanensis*

![Diagram of genome assembly and gene sequences]

Figure 2. The phylogenetic tree of *Acetobacter ghanensis* KBMNS-IAUF-6 16S rDNA sequence deposited in GenBank, NCBI under the accession number of MK968570.

Table 1. Growth rate of *Acetobacter ghanensis* KBMNS-IAUF-6 in different ethanol concentration after 24 h incubation at constant temperatures of 34, 36, 38 and 40°C.

<table>
<thead>
<tr>
<th>No</th>
<th>Ethanol (%)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34°C</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>1+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>36°C</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>1+</td>
<td>1+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>38°C</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>1+</td>
<td>1+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>40°C</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>1+</td>
<td>1+</td>
<td>1+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*: non-growth, 1+: 10^3>CFU/ml>10^1, 2+: 10^5>CFU/ml>10^3, 3+: 10^7>CFU/ml>10^5, 4+: 10^9>CFU/ml>10^7

Table 2. Growth rate of *Acetobacter ghanensis* KBMNS-IAUF-6 in different ethanol concentration after 48 h incubation at constant temperatures of 34, 36, 38 and 40°C.

<table>
<thead>
<tr>
<th>No</th>
<th>Ethanol (%)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>36°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>38°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>40°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>2+</td>
<td>2+</td>
<td>1+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*: non-growth, 1+: 10^3>CFU/ml>10^1, 2+: 10^5>CFU/ml>10^3, 3+: 10^7>CFU/ml>10^5, 4+: 10^9>CFU/ml>10^7

Table 3. Growth rate of *Acetobacter ghanensis* KBMNS-IAUF-6 in different ethanol concentration after 72 h incubation at constant temperatures of 34, 36, 38 and 40°C.

<table>
<thead>
<tr>
<th>No</th>
<th>Ethanol (%)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>1+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>36°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>1+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>38°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>40°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>-</td>
</tr>
</tbody>
</table>

*: non-growth, 1+: 10^3>CFU/ml>10^1, 2+: 10^5>CFU/ml>10^3, 3+: 10^7>CFU/ml>10^5, 4+: 10^9>CFU/ml>10^7
Table 4. Growth rate of Acetobacter ghanensis KBMNS-IAUF-6 in different ethanol concentration after 96 h incubation at constant temperatures of 34, 36, 38 and 40°C.

<table>
<thead>
<tr>
<th>No</th>
<th>Ethanol (%)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>2+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>36°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>1+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>38°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>1+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>40°C</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>4+</td>
<td>3+</td>
<td>3+</td>
<td>1+</td>
<td>-</td>
</tr>
</tbody>
</table>

*: -: non-growth, 1+: 10^3>CFU/ml>10^1, 2+: 10^5>CFU/ml>10^3, 3+: 10^7>CFU/ml>10^5, 4+: 10^9>CFU/ml>10^7

Molecular characterization of Acetobacter isolate. Molecular identification was used to identify this bacterium at species level. The PCR product in this isolate was electrophoresed with the primers of OF BUI and OR BUI. The marker used was 100 bp and the product ranged from 370 to 380 bp. After matching the 16S-rDNA sequence to all sequences in the GenBank genomic database, BLAST software determined that the isolate was identical as Acetobacter ghanensis genomic sequence LN309609.1, 98.77% similarity and 94% coverage. The phylogenetic tree of the sequenced fragment showed that this bacterium was genetically most closely related to Acetobacter ghanensis (Fig. 2). Due
to the genomic similarities found, the 16S-rDNA sequence of the isolate obtained at the GenBank, Acetobacter ghanensis KBMNS-IAUF-6, was deposited under the accession number of MK968570.

Evaluation of Acetobacter ghanensis KBMNS-IAUF-6 resistance to different ethanol concentrations at constant temperatures

The growth intensity and acetic acid production of *Acetobacter ghanensis* KBMNS-IAUF-6 by increasing ethanol content at constant temperatures of 34, 36, 38 and 40°C and constant times of 24, 48, 72 and 96 h decreased in the culture medium (Tables 1 to 4). These results were repeated three times. In Tables 1 to 4, 4+ indicates very high growth rate of AAB equal to 10^5>CFU/ml>10^7, 3+ indicates high growth rate equivalent to 10^7>CFU/ml>10^5, 2+ indicates moderate growth rate equal to 10^5>CFU/ml>10^3, 1+ indicates low growth rate, equivalent to 10^3>CFU/ml>10^1 and - (negative) indicates no growth of AAB in the medium.

Comparison of acetic acid production at different temperatures under constant ethanol content and time

With increasing temperature, growth and acid production in *Acetobacter ghanensis* KBMNS-IAUF-6 decreased in the culture medium (with constant ethanol levels of 5, 7 and 9%) and at constant times (24, 48, 72 and 96 h) (Figures 3 to 6). These results were repeated three times. In Figures 3 to 6, 4+ indicates very high growth rate of AAB equal to 10^5>CFU/ml>10^7, 3+ indicates high growth rate equivalent to 10^7>CFU/ml>10^5, 2+ indicates moderate growth rate equal to 10^5>CFU/ml>10^3, 1+ indicates low growth rate, equivalent to 10^3>CFU/ml>10^1 and - (negative) indicates no growth of AAB in the medium.

Discussion and Conclusion

So far, high temperature and ethanol resistant strains of *Acetobacter* have been isolated and identified from fruits such as peaches (7, 13), cherry (14, 15), apricot (16) and Rotab-Date palm (10). In the present experiment, banana fruit was used as a source of isolation. In a 2015 study, Klawpiyapamornkun et al., Enriched acetic acid species in medium containing sodium chloride and ethanol and then in medium containing glucose, yeast extract, peptone, glycerol, potato extract, ethanol, agar and bromocresol. They selected the colonies that turned yellow on their culture medium as acetic acid bacteria. Cyclohexamide was also added to this medium to prevent fungal growth (6). This method was costlier than the method used in this study because of the high diversity of media contents and the potential for acetic acid bacteria to be lost due to the use of ethanol-enriched medium. Sharafi et al. isolated AAB from different fruits after fruit extract by GYC medium (10% glucose, 1% yeast extract, 1.5% agar and 2% calcium carbonate) and also screened by Frateur culture medium. In this way, bacteria were grown that were able to produce acetic acid and dissolve calcium carbonate by oxidizing the glucose in the culture medium (11). This method was suitable for the isolation of different types of AAB, but it is not suitable for isolation of *Acetobacter* species alone because *Acetobacter* spp. are only able to use alcohol and the use of glucose-containing medium makes them difficult to be isolated. In 2008, Moryadee and Pathom-Aree enriched the AAB spp. from various fruits in media containing 4% ethanol for 3 to 5 days at 37°C and then agar medium with purple bromocresol. They selected the colonies with yellow surrounded area as AAB. Due to the mesophilic nature AAB, the use of 37°C in the enrichment medium may kill bacteria that have a high potential for thermo-tolerance (17). In a research, Diba et al. (2015) strains of AAB after enrichment in medium containing 3% acetic acid and 4% ethanol, were cultured in a medium containing yeast extract, polypeptone, glycerol, agar, purple bromocruzol and ethanol. They isolated the colonies containing yellow halo around them as AAB. This method was more expensive than the one used in the present experiment because of the presence of peptone as a nitrogen source (1). The extract obtained in the present experiment was considered a natural enrichment medium for AAB because yeast and acetic acid bacteria in fruit inhibited the growth of other secondary microorganisms, respectively, by producing alcohol and acid. *Acetobacter* species were able to produce acetic acid and dissolve calcium carbonate by oxidizing ethanol in the Frateur medium. These bacteria also changed the color of the bromocresol green medium in the Carr medium, during the oxidation and production of acetic acid, from green to yellow, as well as due to the redox and acetic acid use, from yellow to blue again. In one study, the ability of AAB to grow in yeast extract agar medium containing 4 to 10% ethanol was determined and most of these bacteria were able to grow in medium containing 4 to 6% ethanol but only a few of them were able to grow in medium containing 10% ethanol (6). Beheshti-Maal et al. Reported in 2010 the production of apricot vinegar by an *Acetobacter* strain...
isolated from Iranian apricot. The target *Acetobacter* was able to grow in concentrations of 5%-9% ethanol at 30°C (16). In 2009 and 2010, Beheshti-Maal and Shafiei isolated and identified an *Acetobacter* species from Iranian white-red cherry fruit. The species was able to produce acetic acid at concentrations of 5%-9% ethanol at 34-36°C after 72 hours. As the concentration of ethanol increased, the growth rate and consequently the production of acetic acid decreased by the mentioned isolate (14, 15). In 2010, Beheshti-Maal and Shafiei isolated and identified an *Acetobacter* species from Iranian peach fruit. The isolated AAB was able to grow in the presence of 2.5%-5.5% ethanol at 34-40°C after 96 h of incubation. In this study, increasing the percentage of ethanol increased bacterial susceptibility to high temperatures (7, 13). In all of these studies, acetic acid producing isolates were identified at the level of genus and were identified as *Acetobacter*. With the exception of *Acetobacter* isolated from cherry, other isolates were not able to withstand concentrations of more than 5% ethanol at temperatures above 34°C (7, 13-16). In the present experiment, the growth rate of *Acetobacter ghanensis* KBMNS-IAUF-6 decreased with increasing ethanol at constant temperature due to shock and increased bacterial cell sensitivity. Also, *Acetobacter ghanensis* KBMNS-IAUF-6 was able to grow in culture medium containing 9% ethanol at 40°C after 72 h. In 2014, it was shown that increasing the amount of ethanol increased the temperature sensitivity in a species of *Acetobacter* isolated from Rotab. Also, with increasing the temperature, the growth of this strain decreased in a constant amount of ethanol (10). In the present experiment, with increasing ethanol content, the susceptibility of *Acetobacter ghanensis* KBMNS-IAUF-6 to higher temperature and its growth was decreased. For example, the cells' sensitivity to 9% ethanol was greater than that of 7% ethanol at 40°C. Also, with increasing temperature the growth of this strain decreased in constant amounts of ethanol. This is the first report of the isolation of an acetic acid producing bacterium from banana fruit in Iran. According to the results of single-factor optimization, *Acetobacter ghanensis* KBMNS-IAUF-6, which was able to grow in a medium containing 9% ethanol at 40°C, was identified as a high temperature and ethanol resistant strain. Therefore, this new strain could be suggested as a viable option for producing banana vinegar on a semi-industrial and industrial scale.

Acknowledgments

This study was originated from a research project No. 28326/301 approved by the Research Council of Falavarjan Branch, Islamic Azad University, Isfahan, Iran. The authors express their gratitude to the Vice-Chancellor for Research and Technology of the Falavarjan Branch, Islamic Azad University. Also, we are grateful to the Department of Microbiology and Biotechnology of Taligene Pars Co., Isfahan Science and Technology Town, Isfahan, Iran for their scientific and technical support in the field of molecular identification of bacteria.

Conflict of Interest

There is no conflict of interest reported between authors.
کیوان بهشتی مال
(1) نویسنده شفیعی
1. دانشگاه میکروبیولوژی، گروه میکروبیولوژی، دانشکده علوم زیستی، واحد فلورجان، دانشگاه آزاد اسلامی، اصفهان، ایران.
2. کارشناس ارشد میکروبیولوژی، گروه میکروبیولوژی، دانشکده علوم زیستی، واحد فلورجان، دانشگاه آزاد اسلامی، اصفهان، ایران.

چکیده
زمینه و هدف: استفاده از سویه‌های استاتوکنتر مقوم به اتانول و دما باید تولید سرکه در مقیاس صنعتی اهمیت دارد. هدف از این بررسی جدید سویه‌های استاتوکنتر مقوم به میزان بالای دما و اتانول تولید سرکه بود.

مواد و روش: گزارش کار: تولید فاکتور مزود به محیط فرتیور و پس از 44 ساعت بکتری‌ها در موارد مختلف محققان و این باکتری نسبت به دما، به دست آمده در کل موارد لایه‌ای اتانول در دما و زمان لایه‌ای اتانول.

یافته‌ها: بررسی‌های جدید در محیط کار کننده دانه که این باکتری نیاز به ناحیه بهینه سایر به‌روش که فاکتورهای این گونه وارد به متغیر می‌شوند.

نتیجه‌گیری: برای تولید سرکه در مقیاس صنعتی این سویه جدید می‌تواند در محیط کار کننده ناحیه بهینه سایر به روش که فاکتورهای این گونه وارد به متغیر می‌شوند.

کلیدواژه‌ها
- استاتوکنتر، باکتری، هاپاس، سوپسترکتاسین، سوپسترکتاسین، سوپسترکتاسین، سوپسترکتاسین.

اطلاعات مقاله
تاریخچه مقاله
دریافت: 1398/06/02
پذیرش: 1398/09/27
انتشار آنالیز: 1399/10/10

موضوع: نوبندا مسئولی: بهشتی مال، گروه میکروبیولوژی، دانشکده علوم زیستی، واحد فلورجان، دانشگاه آزاد اسلامی، اصفهان، ایران.

آدرس: beheshtimaal@iaufala.ac.ir

مقدمه
بر اساس نظر سازمان غذا و دارو در ایالات متحده، سرکه یک محصول ترک مصرف حاصل از استیک اسید است. استیک اسید در سرکه توسط باکتری های استیک اسید تولید می‌شود. کمیت تولید سرکه به نوع استیک اسید، سوپسترکتاسین و روش استفاده شده در تولید آن سبب می‌شود. این اکثریت باکتری‌های استیک اسید در حال استخراج تنوع ویژه قدیمی دارند. که می‌توانند سرکه با استفاده از انواع مختلف باکتری‌های استیک اسید به عنوان استیک اسید تولید شوند.

شنوینه از انواع مختلف سرکه که تاکنون شناخته شده است می‌توان سرکه شرکت، سرکه درمان‌دهنده، سرکه سبز، سرکه مایل و سرکه برای بهبود از سرکه بهبودی‌ای با تغییرات انجام داده می‌شود. هدف این بررسی از این ناحیه که با استفاده از سویه‌های استاتوکنتر مقدم به اتانول و دما باید تولید سرکه در مقیاس صنعتی اهمیت دارد. هدف از این بررسی جدید سویه‌های استاتوکنتر مقدم به میزان بالای دما و اتانول تولید سرکه بود. در تولید سرکه از طریق استیک اسید تولید می‌شود و روش تولید سرکه به نوع استیک اسید، سوپسترکتاسین و روش استفاده شده در تولید آن سبب می‌شود.
جدانه‌ای اولیه سویه‌های مختلف باکتری‌های
استیک اسید

موز سرده و شرین، تا زمان‌های روم مگس میوه و استلام
بی‌هندگی که در حالت داخل کابینت تمام قرار داده شد.
سپس از بیست گلد و فرشه‌های خاصی که می‌تواند باعث شود
استر، عصاره به باعث تغییر از موز به بطری است. آبیه از
میزان نصف حجم آن منتقل شد. همچنین باید بذلگری از انجر
بطوری به دلیل تولید دی اکسیدکربن توسط مخمرهای موجود
در میوه، جنر نوار الاین باعث یافته است. این بطری از
بطری استریل، و اتانول به دلیل تولید دی اکسیدکربن می‌باشد. در
این بطری، با توجه به تغییرات، در بطری استریل و دیگر
با درجه یک دقیقه منتهی که در یک دقیقه از
استارک، اسپانیا)؛ آغند کشت، یک میکروکولیکس و اکسیداسیون شیمی‌شیمایی، متحرک با غیر
متحرک، کاتالاز مثبت، اکسیداز منفی، موزیلوئز و دارای
اسپوراتون می‌باشد. در غونه‌های دستیاری طی فرآیند
اکسیداسیون و اکسیداسیون دیگر به ترتیب انواع، استریل، اسید و
سپس استیک اسید به دی اکسید کرن اکسید می‌شود. فرآیند
اکسیداسیون مجدداً زمانی اتفاق می‌افتد که میزان اکسیدز ریز باد
ولی انواع در محیط ناباینده، بوراکمر در فرآیند تولید سرکه میزان
غلطه انواع به عوامل سیسترا سپری اکسیداز دارد (2). روی سنتی،
به عنوان الین فرآیند صنعتی تولید سرکه، در کمکه می‌تواند انجام
شود. باوجود کمیت بالای محصول، این سرکه کند بود در قرن نوزدهم،
 تخمر‌های سطحی، به صورت روک‌های سیریکی نمو می‌کرد. یکی
از این به‌هیچ‌کنار قدرت این یک کار نوعی است. به گونه‌ای که
در شورال سال ۱۹۸۹، روی تغییر سرکه و توسعه
یافته‌اند. بکار برای کمیت بالایی که دارد، تولید سرکه به کمیت با
از این در زمان کوتاه می‌باشد. بکار برای کنترل تولید
سرکه شما استفاده از به‌همان سرکه غیر می‌بودد.

سپس ویژگی‌های اکسیداز استریکوپنیک و اکسیدازی
برای این غربال گونه‌های مختلف استوک‌کار

غربال گونه‌های مختلف استوک‌کار

برای غربال گونه های استوک‌کار از ساری باکتری‌های
استیک اسید، جداگانه یک کار آن در محیط کار و
فرآیند از نظر پیش‌بینی‌گری‌های کاتالاز منفی یک بود
همچنین، ۴۸ ساعت پس از ساخت رنگ محیط کار را رصد و
پس از ۲۷ ساعت مجدداً آب کرد، به عنوان گونه‌ای استوک‌کار
غربال گونه شد (11).

شناسا مولکولی گونه‌های جداسازی شده/استوک‌کار

چند کلیه خالص از کشت ۲۴ ساعته این باکتری مورد نظر از
محیط کشت کار با ۵۰ میلی لیتر آب مقرر استر فیلتر، میزان
۴۰ میلی لیتر از استر بیشترز باکتری‌های موجود در
سپس اکسیداسیون و دیگر مجبور به مزار در منطقه
فرآیند، از نظر پیش‌بینی‌گری کاتالاز منفی یک بود
همچنین، ۴۸ ساعت پس از رنگ محیط کار را رصد و
پس از ۲۷ ساعت مجدداً آب کرد، به عنوان گونه‌ای استوک‌کار
غربال گونه شد (11).

مواد و روش کار

مواد شیمیایی و محیط‌های کشت

مواد شامل کیت رنگ آمیزی گرم
(Thaligene Pars Co., مقدار شیمیایی، مولکولی با کیت
(Merk, Germany.ROPAP, آب اکسیداز و دیسک اکسیداز
(I. NSTT, Iran) بود. همچنین محیط کشت های به کار رفته برای تحقیق شامل
(Taligene Pars Co., مقدار شیمیایی، مولکولی با کیت
(Merk, Germany.ROPAP, آب اکسیداز و دیسک اکسیداز
(I. NSTT, Iran) ۱۰۰ میلی لیتر و انواع، (Germany
(Merk, Germany.ROPAP, آب اکسیداز و دیسک اکسیداز
(I. NSTT, Iran)
میکروبیولوژی منبع می‌تواند از این آزمایش به منظور انتخاب سویه‌های استوبکتر مقاوم به میزان بالای الکل و دما صورت گرفت.

در این آزمایش، یک سویه باکتری استیک اسید با ایجاد هاله شفاف در محیط فراتیور پس از ۷۲ ساعت جداسازی شد (شکل A). بررسی خصوصیات ماکروسکوپی کشت ۲۴ ساعته این باکتری در محیط کارر و فراتیور نشان داد که کلنی‌های رشد یافته گرد، ریز، بیرنگ، شفاف، نرم و دارای بوی ترشی دگی بودند. همچنین خصوصیات میکروسکوپی جدایه در این دو محیط نشان داد که این باکتریها میله‌ای شکل و گرم منفی بودند. طبق نتایج حاصل از غربال‌گری، این جدایه کاتالاز مثبت، اکسیداز منفی و کاتاز سفت و اکسیداز منفی دارای خاصیت اکسیداسیون (شکل C) و اکسیداسیون مجدد (شکل C1) بود. بنابراین این جدایه به عنوان یک گونه استوبکتر شناسایی شد.

نتایج

صدای و خصوصیات ماکروسکوپی، میکروسکوپی و بیوشیمیایی جدایه استوبکتر. در این آزمایش یک سویه باکتری استیک اسید با ایجاد هاله شفاف در محیط فراتیور پس از ۲۴ ساعت جداسازی شد (شکل A). بروز خاصیت اکسیداسیون (شکل C) و اکسیداسیون مجدد (شکل C1) نشان داد که کلان‌ها، رشد یافته گرد، ریز، بیرنگ، شفاف، نرم و دارای بوی ترشی دگی بودند. همچنین خصوصیات میکروسکوپی جدایه و یک سویه که از موز پس از ۷۲ ساعت در محیط فراتیور توسط سویه جداسازی شده از این تولید کرده، در محیط فراتیور نشان داد که کلان‌ها، رشد یافته گرد و دارای خاصیت اکسیداسیون (شکل C) و اکسیداسیون مجدد (شکل C1) بودند.

بهینه سازی گونه‌ها تاک‌فاکتوره مقاوم به میزان بالای اتانول و دما در بخش‌های مختلف و در جدایه/استوبکتر

این آزمایش به منظور انتخاب سویه‌های استوبکتر مقاوم به میزان بالای الکل و دما صورت گرفت. در این بروز کیفیت تولید اسید و رشد جدایه بر حسب واحد تشکیل دهنده کلنی (CFU) در محیط کارر و فراتیور نشان داد که کلان‌ها، رشد یافته گرد و دارای خاصیت اکسیداسیون (شکل C) و اکسیداسیون مجدد (شکل C1) بودند.
جدول ١. میزان رشد استیوبکتریا کانسیس ٦ در مقایسه مختلف اتانول‌ها از ٢٤ ساعته در دمای‌های ٣٨، ٣٦ و ٣٤°C

<table>
<thead>
<tr>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>١</td>
<td>٣٤°C</td>
<td>٢</td>
<td>٣٤°C</td>
<td>٣</td>
<td>٣٤°C</td>
<td>٤</td>
<td>٣٤°C</td>
</tr>
</tbody>
</table>

جدول ٢. میزان رشد استیوبکتریا کانسیس ٦ در مقایسه مختلف اتانول‌ها از ٢٤ ساعته در دمای‌های ٣٨، ٣٦ و ٣٤°C

<table>
<thead>
<tr>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>١</td>
<td>٣٤°C</td>
<td>٢</td>
<td>٣٤°C</td>
<td>٣</td>
<td>٣٤°C</td>
<td>٤</td>
<td>٣٤°C</td>
</tr>
</tbody>
</table>

جدول ٣. میزان رشد استیوبکتریا کانسیس ٦ در مقایسه مختلف اتانول‌ها از ٢٤ ساعته در دمای‌های ٣٨، ٣٦ و ٣٤°C

<table>
<thead>
<tr>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>١</td>
<td>٣٤°C</td>
<td>٢</td>
<td>٣٤°C</td>
<td>٣</td>
<td>٣٤°C</td>
<td>٤</td>
<td>٣٤°C</td>
</tr>
</tbody>
</table>

جدول ٤. میزان رشد استیوبکتریا کانسیس ٦ در مقایسه مختلف اتانول‌ها از ٢٤ ساعته در دمای‌های ٣٨، ٣٦ و ٣٤°C

<table>
<thead>
<tr>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
<th>رنگ</th>
<th>اتانول (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>١</td>
<td>٣٤°C</td>
<td>٢</td>
<td>٣٤°C</td>
<td>٣</td>
<td>٣٤°C</td>
<td>٤</td>
<td>٣٤°C</td>
</tr>
</tbody>
</table>
به نام KBMNS
تحت شماره دسترسی 38 و 7
با توجه به مشابهت یافت شده ژنومی، توالی گاننسی، میزان رشد و میزان رشد ثابت (0 ساعت) در استوتابکتر گاننسیس KBMNS-IAUF (شکل 3)، در استوتابکتر گاننسیس KBMNS-IAUF) در دماهای مختلف و میزان اتانول ثابت و 7 ساعت KBMNS-IAUF.

نو 모 다. 1 میزان رشد در دماهای مختلف و میزان اتانول ثابت (5 و 7 ساعت) در استوتابکتر گاننسیس KBMNS-IAUF.

خصوصیات مولکولی جدایی/ استوتابکتر
برای شناسایی این باکتری در حد گونه، از روش شناسایی مولکولی OF BUI استفاده شد. محصول در آن جدایی با پرایمر های 16S-PCR استوتابکتر گاننسیس KBMNS-IAUF تحت شماره دسترسی MK968570 به ثبت رسید.

کردن و تولید استوتابکتر گاننسیس KBMNS-IAUF-6 با افزایش میزان اتانول در دماهای ثابت 38، 36 و 34 با دادن توالی CFU/ml در حد گونه، از روش شناسایی مولکولی OF BUI استفاده شد. محصول در آن جدایی به پرایمر های 16S-PCR استوتابکتر گاننسیس KBMNS-IAUF-6 تحت شماره MK968570 به ثبت رسید.

خصوصیات مولکولی جدایی/ استوتابکتر
برای شناسایی این باکتری در حد گونه، از روش شناسایی مولکولی OF BUI استفاده شد. محصول در آن جدایی با پرایمر های 16S-PCR استوتابکتر گاننسیس KBMNS-IAUF تحت شماره MK968570 به ثبت رسید.

خصوصیات مولکولی جدایی/ استوتابکتر
برای شناسایی این باکتری در حد گونه، از روش شناسایی مولکولی OF BUI استفاده شد. محصول در آن جدایی با پرایمر های 16S-PCR استوتابکتر گاننسیس KBMNS-IAUF تحت شماره MK968570 به ثبت رسید.

خصوصیات مولکولی جدایی/ استوتابکتر
برای شناسایی این باکتری در حد گونه، از روش شناسایی مولکولی OF BUI استفاده شد. محصول در آن جدایی با پرایمر های 16S-PCR استوتابکتر گاننسیس KBMNS-IAUF تحت شماره MK968570 به ثبت رسید.

خصوصیات مولکولی جدایی/ استوتابکتر
برای شناسایی این باکتری در حد گونه، از روش شناسایی مولکولی OF BUI استفاده شد. محصول در آن جدایی با پرایمر های 16S-PCR استوتابکتر گاننسیس KBMNS-IAUF تحت شماره MK968570 به ثبت رسید.
رشد میکروارگانیسم‌های ثانویه دیگر موجود در میوه نسبت به سایر روش‌های جداسازی سریع تر، کم هزینه تر، در مقایسه با روش به کار برده شده و همکاران در که توانایی بالایی برای ترموتولرانت در محیط کشت غنی. با توجه به میتوافل بودن باکتری لنی‌هایی که اطرافشان هاله زرد بود را به عنوان باکتری استیک و استفاده از عصاره مخمر، بعد از آزمایش حاضر به دلیل وجود پپتون به عنوان منبع نیتروژن 8 حل کردن باکتری استیک اسید مهر و آبان %، حاوی محصول دارند، این نتایج حاصل سه بار رشد کم و معدل با 10 CFU/ml به دلیل عدم رشد در محیط کشت است.

مقايسه توليد استيكي اسيد در مداهات متغفي تحت ميزان

ثابت اناول و زمان

با افزایش دما، رشد و توليد اسيد در استيكتيک اگنتاتس در محیط کشت کار، روش مطحه ثابت اناول KMBNS-IAUF-6 5، 7 و 9% و میوه هاي ثابت (24، 58 و 96 ساعت) کاهش (با ناپل بر 1 2 و 3 در کمک) این باکتري به دلیل تنوع زیاد محیط کشت به دلیل احتمال هدر رفتن در محیط کشت دادند. ایشان کلنی هایی که اطراح شده زد به عنوان باکتري هاي استيک اسيد استفاده گردند. با توجه به میتوافل بودن باکتری هاي استيكي استفاده از دمای 37 در محیط کشت غنی سازى، ممکن است باکتري هايي که توانایي لاي باي بر ميکروبايرالت و دمحا در دينار، را از بيتدر. (17)، در تحقيقي، سال 2015 گوجه فاکتي استيكي اسيد را پس از غنی سازي در محیط کشت 24/2% استيكي سفيد و 4/2 اناول، در محیط کشت حاوي عصاره مخمر، پلي پيتون، گليسبر، اگار، برومکوزول ارغوز، استيكي اسيد و اناول ثابت اکتيری که هاله زرد در طبقع شده در ازاميش حاضر به دلیل وجود پيتون به عنوان منبع پپتون از 2 در (0) روش جداسازي گوجه فاکتي استيكي اسيد در آزمایيش حاضر كه شالي تيه عصاره مخمر و كشت ان در محیط فاينورپور به نسبت به سابري روش جداسازي نام برده سريع تر، كم هزني تر و همجينيني احتمال تفن رفع باکتري استيكي اسيد به دلیل استفاده از دمای 37 در C سبيس كمت رود، عصاره تيه شده در ازاميش حاضر یک محیط غني سازى طبيعى برای باكنى استيكي اسيد محسوب شد زميخت مخمر و باكنى استيكي اسيد موجود در ميوب به ترتيب به کليک وال اسيد، رشد ميکروبايرانيمى هاي ثابت اسيد در محیط کشت کنارها در محیط فاينورپور قدر به تويل اسيد استيكي و حالي کدين کرينات کلسيم بودن، همچينين ان باكنى حالي محیط کشت حاوي برومکوزول گرا را در محیط کار، طي عمل اكسيساسيون و تويلgression

رضي براي طرح كردن در لازم است.

بحث

تاثير اکتيری هاي ميکروارگانيمى و ميکروارگانيمى و اناول در ميوه هاي ماندن هلو (12، 13) در در كروم 16 و رطب (10) جداسازي و شناسايي شده اندر. در آزمایشي حاضر از ميوب به عنوان منبع جداسازى استفاده گردید. در تحقيقي، در مححل سال 2015 گوجه فاکتي باکتري استيكي اسيد را در محیط حاوي کردن در اناول و اناول به دلیل قارچ به اين محیط. به ویژه در محیط کشت میکروارگانیسم مجهور به دلیل نتوان یای محیط کشت، به دلیل عدم محیط کشت است. این نتایج حاصل سه بار رشد کم و معدل با 10 CFU/ml به دلیل عدم رشد در محیط کشت است.

به انتخاب کردن. همچنين برای جولوگردي که رد در محیط کشت انتخاب کردن. همچنين برای جولوگردي که رد در محیط کشت انتخاب کردن. همچنين برای جولوگردي که رد در محیط کشت است.
شکر و قدردانی

این تحقیق مربوط به طرح پژوهشی مصوبه شورای پژوهشی دانشگاه آزاد اسلامی واحد فلاورجان در سال 1382 شمسی باشید. نویسنده‌گان مراحل تحقیق خود را از معاونت علمی و شهری وزارت بهداشت و فرهنگ و سیاست‌گذاری آماده‌تواند. همچنین در گروه پاسکال و پیونکولوژی شرکت نانشینی از گروه میکروبیولوژی و پیونکولوژی شرکت نانشینی از ناحیه تحقیقاتی اسفهان، به خاطر حمایت‌های علمی و فنی در زمینه‌شناسی مولکولی باکتری‌ها قدردانی می‌گردد.

تعارض منافع

نیستندگان تعارض منافع گزارش نشده است.

References

