ارتقای پارامترهای فیزیکی سلولز باکتریایی به منظور تولید جاذب آلانیده‌های هوا

دکتر غلامحسین بورتقی¹ - دکتر عباس رضایی⁵ - دکتر علی خوانسی⁴ - دکتر رمضانعلی عطایی²

¹- مرکز تحقیقات بهداشت نظامی- دانشگاه علوم پزشکی بلیه اهیزه- تهران - ایران
²- گروه بهداشت محسیت- دانشکده پزشکی- دانشگاه تربیت مدرس- تهران - ایران
³- گروه بهداشت حرفه‌ای- دانشکده پزشکی- دانشگاه تربیت مدرس- تهران - ایران
⁴- مرکز تحقیقات کاربرد درمانی توتکسین‌های میکروب- دانشگاه علوم پزشکی بلیه اهیزه- تهران - ایران
⁵- پیوندگر مسئول- پست الکترونیک: ghpourtagli@yahoo.com

چکیده:
هندف این تحقیق ارتقاء مشخصات فیزیکی سلولز باکتریایی و استفاده از آن به عنوان فیلتر هوا و جانب سطحی آلاینده‌های هوا می‌باشد.

مواد و روش کار: تکنیک مورد استفاده در این تحقیق شامل تولید سلولز باکتریایی، رشد و تکثیر، فراوری و نشان داد که با توجه به حجم اولیه و مانع به آن بود. سپس روش‌های مختلف برای خشک کردن سلولز باکتریایی آزمایش و حجم اولیه و منافذ آن با استفاده از اندازه‌گیری تأثیر بستگی دارد. تاکراری‌های صنعتی آن وجود دارد. استفاده از تغییرات ماکرووی میکروبی آمکن و کل، کردن سلولز باکتریایی همراه با حفظ حجم اولیه و منافذ آن را فراهم آورد به طوری که در آنها منافذی با عرض بیش از ۲۲ و بسیار تنزیل شده که کردن فعل باید کردن گردد.

بحث: این تحقیق نشان داد که استفاده از روش تاسیس ماکرووی باعث تولید سلولز خشک با حجم اولیه و حفظ منافذ آن بود. لذا با اجرای منافذ معین در سلولز باکتریایی خشک متورم امکان استفاده از آن به عنوان فیلترهای بیولوژیک با منافذ مشخص به عنوان جانب مناسب برای حذف آلاینده‌های شیمیایی موجود در هوا فراهم گردد.

کلمات کلیدی: سلولز باکتریایی، ارتقاء منافذ، جانب، آلودگی هوا
مقدمه:
سلول‌های یک از فراوان‌ترین پیوسته‌های موجود در روي‌های زمین است. سلاله میلیون‌ها تن سلول از طریق دبیاری سلول‌های کیهان تولید شده و در صابعه مختلف به مصرف می‌رسد. انتشار ویسیکو ساختار متداشتهای و خواص منحصر به فرد سلول‌ها به لحاظ اندازه تحقیقات بی‌باید و کاربردهای صنعتی در جهت بالایی از اهمیت قرار داده است. دیواره سلولی گاهی بافت بکار می‌رود تغذیه‌ای است که از فیبرهای سلولی تا محلول شکل‌دهنده سلول و به علت شکل فضایی مقلوی خود غیر استیک می‌باشد. گیاهان تنا مشاهده سلول‌های نهادی و برخی از پاتری‌ها می‌توانند تغذیه‌ای با کیفیت چند تا چند میلی‌متری تغذیه‌ای را دارند. چنین سلول‌ها که فیبرهای سلولی را در طی تغذیه نمایند به راحتی باکتری‌ها برای استفاده‌ی خود استفاده می‌کنند. یک سلول باکتری‌پاتری‌ها با استفاده از یک دنگه اسکن میکروسکوب الکترونی (SEM) مدل XL30 شرکت فیلیپس از آن تصویر نهایی گردیده (شکل ۱).

توجه دارد (۸۸) در حال حاضر برخی از شرکتهای SKC و Milipore خارجی از جمله و برخی ترکیبات مشابه انواع فیلتر با منافع مشخص تولید و عرضه می‌نمایند که اطلاعات آن را در سند اطلاعات قرار نمی‌دهند.

سلول‌ها نیز به نسخه‌ای که با همکاری یکدیگر توانستند استفاده از آن به عنوان جابجای سطحی آلایندی های چاپ وجود دارد (۸۸) در حال حاضر برخی از شرکتهای SKC و Milipore خارجی از جمله و برخی ترکیبات مشابه انواع فیلتر با منافع مشخص تولید و عرضه می‌نمایند که اطلاعات آن را در سند اطلاعات قرار نمی‌دهند.
فرآهم گردید. تکیه مورد استفاده در این تحقیق شامل رشد و تکثیر سلول باکتریایی و سپس خشک کردن آن همراه با حفظ حجم اولیه و منافع آن می‌باشد. خشک کردن شدن در وضع حذف رطوبت موجود در سلول باکتریایی می‌باشد. تکیه‌های مختلف خشک کردن بیشتر برای سری‌یابی، داروهای گیاهی، مواد غذایی، بیوتوموگرافی و غیره استفاده دارند. در هوای آزاد جریان هوای گرم، خشک کردن در دسیکاتور، خشک کردن به روش فریز کردن با گازنتروز (FD) نیز مطرح می‌باشد.

مواد و روش‌ها:

- تولید سلول باکتریایی با استفاده از استویاکترگلیپیم
 اولین مرحله در تولید سلول باکتریایی کشت باکتری استویاکترگلیپیم می‌باشد. به منظور کشت باکتری از ATCC10454 استفاده گردید. این باکتری قبلاً در آزمایشگاه مورد بررسی قرار گرفته و امکان رشد و تکثیر آن فراهم گردید است. بیش‌تر شده SH برای کشت باکتری از محیط کشت توسط اسکرام و هیستروتن استفاده شد. ترکیب محیط کشت شامل گلرک ۲۴/دصد، پی‌تیو/۵۰۰ دصرد. عصاره SH مایع/۵/دصد. دِل سیدیم ۲/۷۰ دصرد و اسید بیتیکیک ۱/۸/دصد می‌باشد. ترکیبات فوق ابتدا به آب مختلط افزوده شده و برای حل شدن آگار موجود در آنها
نتایج آزمایشات ناشی از بکارگیری اشعه ماکروویو نشان داد، در قدرت‌های W ۷۰۰ - ۵۰۰، سلولز باکتریایی کاملاً خشک گردیده و حجم اولیه خود را از دست می‌دهد و لی و در قدرت W ۶۰۰ - ۱۸۰ عملیات خشک شدن سلولز با سرعت کمتری انجام می‌گردد و در هنگام خشک شدن بخار آب ایجاد شده باعث ایجاد فشار و باز نگه داشتن بافت‌های سلولز گرده و در نهایت نمونه سلولز پس از خشک

با حفظ حجم اولیه آن در شکل ۵ نشان داده شده است.

منافذ و سطوح داخلی سلولز باکتریایی پس از خشک شدن

شدن به صورت متوام با پف کردن باقی می‌ماند. پس از تکرار آزمایش مشخص گردید که در قدرت W ۳۳۰ عمده ضخامت سلولز پس از خشک شدن باقی مانده، در این حالت مجموع سطح منافذ آن بسیار بیشتر از حالت ورقه ای می‌باشد (شکل ۴). این سلولز به طور کامل ضخامت اولیه خود را که حدود یک سانتی‌متر بوده است حفظ نموده و دارای حجم منافذ بالا می‌باشد.
بله، گرم، افزایش کربن و استفاده از خلا می باشد [23 و 24]. جدول 1 نشان می دهد که سطح منافذ سلولز میکروبی خشک و رطوبت ایجاد کرده که با روش‌های دیگر باید جریان مایکروبی ایجاد گردد.

| نوع سلولز | سطح منافذ مقدار منافذ | سلولز خشک و رطوبت ایجاد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار منافذ</td>
<td>(m²/g) BET</td>
<td>8/2015</td>
</tr>
<tr>
<td>حجم منافذ</td>
<td>(cm³/g) ATPV</td>
<td>0/8</td>
</tr>
</tbody>
</table>

در حالتی که پس از ایجاد حالت ترم همراه با خشک شدن سلولز میکروبی منافذ آن به مقدار سیار زاید باقی مانند، به طوری که عدد 232 برای سلولز میکروبی ترکیبی ایجاد بهبود در افزایش های مربوط به کربن فعل می باشد.

بحث:

نتایج تحقیقات مختلف از جمله پیتر و توپوساکی [17 و 18] نشان می دهد که سلولز مایکروبی دارای منافذ و خرطوم زیادی می باشد و از همین خاصیت به همراه توانایی جذب و رطوبت سیار بالای آن برای جذب مایعات و تحقیقات محلول در آن استفاده شده است [19].

یکپارچه و اخراج در ادامه تحقیقات خرد که برای افزایش منافذ موجود در سلولز باکتریایی انجام داد [20] نشان داد که منافذ ایجاد شده در سلولز باکتریایی یکپارچه و از همین خاصیت به همراه توانایی جذب و رطوبت سیار بالای آن برای جذب مایعات و تحقیقات محلول در آن استفاده شده است.

출처:

- پیتر، ج. و توپوساکی. 2001. تأثیر تکثیرات مختلف از جمله پیتر و توپوساکی. مجله میکروبی شناسی پزشکی ایران (سال 6 شماره 10). غلامحسین بورنکی و همکاران.

[11] Lee M, Han D, Jeong J. Effect of kimchi powder level and drying methods on...